ВНУТРИТРУБНЫЙ СНАРЯД-ДЕФЕКТОСКОП Российский патент 2017 года по МПК G01B17/00 F17D5/02 F16L55/26 

Описание патента на изобретение RU2606205C1

Изобретение относится к области неразрушающего контроля нефтегазопроводов, может быть использовано для целей определения дефектов, позиционирования их на трубопроводе и определения пространственных координат с помощью системы ориентации и навигации, а также измерения пройденного внутритрубным инспектирующим снарядом-дефектоскопом расстояния.

Известен внутритрубный снаряд-дефектоскоп, содержащий цилиндрический контейнер, являющийся магнитопроводом, закрепленные на нем в передней и задней частях полюсы постоянного магнита, щетки-магнитопроводы, размещенные в радиальных направлениях между полюсами постоянного магнита и трубопроводом, концентрический ряд ластов, размещенных между полюсами постоянного магнита, в каждом из ластов вмонтированы дефектоскопические датчики, внутри контейнера размещен блок электроники с приборами ориентации и навигации, а также блок источников электрического питания, два колесных одометра, один из которых расположен в задней части контейнера, отличающийся тем, что дополнительно содержит вал с двумя жестко закрепленными колесами, расположенными в задней части контейнера, двигатель, жестко закрепленный на контейнере и соединенный через механическую передачу с валом, два колеса в передней части контейнера, видеокамеру с подсветкой в передней части контейнера, соединенную с блоком электроники, радиоприемник-передатчик, закрепленный на контейнере, при этом второй колесный одометр расположен в передней части контейнера (патент на полезную модель, МПК G01C 21/00, №118739 от 27.04.2012 г.).

Недостатком данного внутритрубного снаряда-дефектоскопа является недостаточная точность измерения пройденного пути, связанная с проскальзыванием колес одометра.

Наиболее близким по технической сущности и достигаемому результату к предложенному устройству является внутритрубный снаряд-дефектоскоп, содержащий цилиндрический гермоконтейнер, опорные элементы, включающие в себя переднюю и заднюю эластичные манжеты, установленные на краях гермоконтейнера, дефектоскопические датчики, расположенные снаружи по периметру гермоконтейнера, и соединенные с размещенным внутри гермоконтейнера электронным блоком, содержащим блок питания, приборы ориентации, навигации и блок регистратора, систему измерения пройденного пути, снабженную подпружиненными колесами, и закрепленную в задней части гермоконтейнера (патент РФ №2334980 от 23.04.2007 г., МПК G01N 27/83, F17D 5/02, G01B 7/14).

Недостатком данного внутритрубного снаряда-дефектоскопа является недостаточная точность измерения пройденного пути

Указанный внутритрубный снаряд-дефектоскоп снабжен системой измерения пройденного пути, выполненной на основе колесных одометров. Измеритель пройденного пути, выполненный на основе колесного одометра, действие которого основано на измерении оборотов прижимного колеса, практически не может обеспечить длительный контакт с поверхностью исследуемой трубы без проскальзывания колеса. Кроме того, при длительном контакте с поверхностью исследуемой трубы колесо изнашивается, его диаметр уменьшается, что также приводит к ошибке измерения пройденного пути. Все эти факторы приводят к тому, что при обследовании труб большой длины небольшие ошибки измерения пути за счет проскальзывания колеса и(или) за счет его износа приводят к неправильному определению места расположения дефектов трубы.

Техническим результатом изобретения является повышение точности измерения пройденного пути.

Технический результат достигается за счет того, что внутритрубный снаряд-дефектоскоп содержит цилиндрический гермоконтейнер, опорные элементы, включающие в себя переднюю и заднюю эластичные манжеты, установленные на краях гермоконтейнера, дефектоскопические датчики, расположенные снаружи по периметру гермоконтейнера и соединенные с размещенным внутри гермоконтейнера электронным блоком, содержащим блок питания, приборы ориентации, навигации и блок регистратора, систему измерения пройденного пути, снабженную подпружиненными колесами и закрепленную в задней части гермоконтейнера, при этом система измерения пройденного пути выполнена в виде трех подпружиненных колес, расположенных под углом 120° друг к другу, причем каждое колесо снабжено акустическим преобразователем, закрепленным на оси каждого подпружиненного колеса под углом 30°-60° к центральной оси снаряда-дефектоскопа, размещенные в гермоконтейнере три измерителя пройденного пути и сумматор, при этом каждый преобразователь соединен кабелем с входом соответствующего измерителя пройденного пути, а выход каждого измерителя пройденного пути соединен с соответствующим входом сумматора, выход которого соединен с блоком регистратора, причем измеритель пройденного содержит генератор гармонического сигнала, последовательно соединенные цифровой измеритель доплеровского сдвига частоты, вычислитель скорости движения, вычислитель пройденного пути, при этом выход генератора гармонического сигнала соединен с преобразователем и входом цифрового измерителя доплеровского сдвига частоты.

Сущность изобретения поясняется чертежами, на которых схематически представлено предлагаемое устройство.

На фиг. 1 изображен общий вид внутритрубного снаряда-дефектоскопа.

На фиг. 2 представлена система измерения пройденного пути.

На фиг. 3 представлена блок-схема соединений измерителей пройденного пути с сумматором.

На фиг. 4 изображена блок схема одного измерителя пройденного пути.

На фиг. 5 представлена схема работы преобразователя.

На фиг. 6 изображена эмпирическая зависимость амплитуд флуктуаций сигнала на преобразователе при движении снаряда-дефектоскопа по трубе при разных углах положения преобразователей относительно центральной оси снаряда-дефектоскопа.

Внутритрубный снаряд-дефектоскоп, установленный в трубе 1, содержит цилиндрический гермоконтейнер 2, опорные элементы, включающие в себя переднюю 3 и заднюю 4 эластичные манжеты, установленные на краях гермоконтейнера 2, дефектоскопические датчики 5, расположенные снаружи по периметру гермоконтейнера 2 и соединенные с размещенным внутри гермоконтейнера электронным блоком 6, содержащим блок питания, приборы ориентации, навигации и блок регистратора, систему измерения пройденного пути, снабженную подпружиненными колесами 7 и закрепленную в задней части гермоконтейнера 2, при этом система измерения пройденного пути выполнена в виде трех подпружиненных колес 7, расположенных под углом 120° друг к другу, причем каждое колесо 7 снабжено акустическим преобразователем 8, закрепленным на оси каждого подпружиненного колеса 7 под углом 30°-60° к центральной оси снаряда-дефектоскопа, размещенные в гермоконтейнере 2 три измерителя пройденного пути 9 и сумматор 10, при этом каждый преобразователь 8 соединен кабелем 11 с входом соответствующего измерителя пройденного пути 9, а выход каждого измерителя пройденного пути 9 соединен с соответствующим входом сумматора 10, выход которого соединен с блоком регистратора, причем измеритель пройденного пути 9 содержит генератор гармонического сигнала 12, последовательно соединенные цифровой измеритель доплеровского сдвига частоты 13, вычислитель скорости движения 14, вычислитель пройденного пути 15, при этом выход генератора гармонического сигнала 12 соединен с преобразователем 8 и входом цифрового измерителя доплеровского сдвига частоты 13.

Устройство работает следующим образом.

Внутритрубный снаряд-дефектоскоп устанавливают в исследуемую трубу 1. Опорные элементы, включающие в себя переднюю 3 и заднюю 4 эластичные манжеты, установленные на краях гермоконтейнера 2, обеспечивают движение внутритрубного снаряда-дефектоскопа в трубе 1 под действием движущейся среды. Подключают источники питания к электронному блоку 6, содержащему блок питания, приборы ориентации, навигации, блок регистратора, систему измерения пройденного пути, снабженную подпружиненными колесами 7 и закрепленную в задней части гермоконтейнера 2. Дефектоскопические датчики 5, расположенные снаружи по периметру гермоконтейнера 2 и соединенные с размещенным внутри гермоконтейнера 2 электронным блоком 6, в процессе движения внутритрубного снаряда-дефектоскопа в трубе 1 определяют дефекты трубы 1 и подают информацию на блок регистратора.

Одновременно система измерения пройденного пути, выполненная в виде трех подпружиненных колес 7, расположенных под углом 120° друг к другу, причем каждое колесо 7 снабжено акустическим преобразователем 8, закрепленным на оси каждого подпружиненного колеса 7, под углом 30°-60° к центральной оси снаряда-дефектоскопа, дает информацию о пройденном пути в реальном масштабе времени и также подает эту информацию на регистратор. Это позволяет определить координаты дефектов по всему пути внутритрубного снаряда-дефектоскопа в трубе 1. Таким образом, можно не только определить дефекты трубы, но и определить их точное место расположение.

В процессе движения внутритрубного снаряда-дефектоскопа преобразователи 8, закрепленные на осях трех подпружиненных колес 7, установленных под углом 120° друг к другу, перемещаются вместе с снарядом-дефектоскопом.

Три измерителя пройденного пути 9, соединенные с соответствующими тремя преобразователями 8 кабелями 9, вычисляют путь, пройденный внутритрубным снарядом-дефектоскопом. Полученные данные поступают на соответствующий вход сумматора 10 и далее на регистратор электронного блока 6.

Генераторы гармонического сигнала 12 каждого из трех измерителей пройденного пути 9 подают синусоидальное напряжение на соответствующие преобразователи 8. Излученные преобразователями 8 акустические волны попадают на рассеивающую внутреннюю поверхность трубы 1. Отраженные от шероховатостей внутренней поверхности трубы 1 рассеянные акустические волны попадают на приемную поверхность преобразователей 8, создавая дополнительное электрическое напряжение на преобразователях 8, пропорциональное амплитуде звукового давления отраженных рассеянных волн. Одновременно генераторы гармонического сигнала 12 подают синусоидальное напряжение на входы цифровых измерителей доплеровского сдвига частоты 13. В цифровых измерителях доплеровского сдвига частоты 13 проводят преобразование Фурье сигнала, при этом рассеянный сигнал отделяют в пространстве частот от сигнала возбуждения и измеряют величину доплеровского сдвига частоты рассеянного сигнала относительно частоты генератора гармонического сигнала 12. Далее сигнал поступает на вход вычислителя скорости движения 14. Сдвиг частоты рассеянного сигнала однозначно связан со скоростью относительного движения излучателя и стенки трубы. Вычисляют скорость относительного движения по известной формуле:

,

где c - скорость звука;

β - угол между осью преобразователя и рассеивающей поверхностью.

Затем сигнал поступает на вычислитель пройденного пути 15, в котором скорость интегрируют и вычисляют пройденный внутритрубным снарядом-дефектоскопом путь.

После чего сигнал поступает на соответствующий вход сумматора 10.

Рабочая частота генератора гармонического сигнала выбирается из следующих соображений. Амплитуда рассеянных акустических волн зависит от величины шероховатости ξ и от волнового числа k звуковой волны. Для того чтобы рассеянные на шероховатостях звуковые волны имели достаточную (из соображений отношения «сигнал-шум») величину для регистрации, необходимо, чтобы ξ⋅k имели величину, превышающую хотя бы 0.1: , или . Подставляя c=1500 м/сек, величину характерной шероховатости внутренней поверхности трубы ξ=20-10-6 м, получаем: Гц.

Установка расстояния и угла наклона оси преобразователя 8 относительно стенки трубы определяется из необходимости максимально увеличить величину рассеянного акустического сигнала.

Эксперименты показали, что в диапазоне расстояний 20-50 мм и углов 30°-60° преобразователь 8 уверенно принимает рассеянный сигнал от шероховатостей высотой 20-100 мкм. Вне этого диапазона углов рассеянное поле не дает достаточного вклада в полный сигнал. На фиг. 6 показана экспериментальная зависимость флуктуаций полного сигнала, характеризующая именно рассеянный сигнал (нормировка - относительно сигнала флуктуаций при 45°) на преобразователе, от угла наклона при его движении над шероховатой границей. 0° соответствует скользящему направлению излучаемого звука, 90° соответствует нормальному направлению. Видно, что в диапазоне углов 30°-60° значения флуктуаций максимальны.

Похожие патенты RU2606205C1

название год авторы номер документа
СИСТЕМА ОПРЕДЕЛЕНИЯ КООРДИНАТ ТРАССЫ ПОДЗЕМНОГО ТРУБОПРОВОДА 2010
  • Синев Андрей Иванович
  • Никишин Владимир Борисович
  • Ульянов Алексей Владимирович
  • Никишина София Гариевна
  • Копичева Алла Алексеевна
RU2437127C1
ВНУТРИТРУБНЫЙ СНАРЯД-ДЕФЕКТОСКОП С КОЛЕСНЫМИ ОДОМЕТРАМИ 2007
  • Синев Андрей Иванович
  • Никишин Владимир Борисович
  • Чигирев Петр Григорьевич
  • Плотников Петр Колестратович
RU2334980C1
ВНУТРИТРУБНЫЙ СНАРЯД-ДЕФЕКТОСКОП С ИЗМЕНЯЕМОЙ СКОРОСТЬЮ ДВИЖЕНИЯ 2008
  • Чеботаревский Юрий Викторович
  • Синев Андрей Иванович
  • Плотников Петр Колестратович
  • Никишин Владимир Борисович
  • Фомин Антон Игоревич
RU2361198C1
СИСТЕМА ОПРЕДЕЛЕНИЯ КООРДИНАТ ТРАССЫ ПОДЗЕМНОГО ТРУБОПРОВОДА 2001
  • Плотников П.К.
  • Синев А.И.
  • Никишин В.Б.
  • Рамзаев А.П.
RU2197714C1
ВНУТРИТРУБНЫЙ СНАРЯД-ДЕФЕКТОСКОП С РЕЗЕРВИРОВАННЫМИ ДАТЧИКАМИ ДЕФЕКТОВ И ОДОМЕТРАМИ 2009
  • Синев Андрей Иванович
  • Плотников Петр Колестратович
  • Морозов Алексей Константинович
  • Никишин Владимир Борисович
  • Чигирев Петр Григорьевич
RU2406082C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ РАССТОЯНИЯ, ПРОЙДЕННОГО ВНУТРИТРУБНЫМ СНАРЯДОМ-ДЕФЕКТОСКОПОМ С ОДОМЕТРАМИ 2006
  • Синев Андрей Иванович
  • Плотников Петр Колестратович
  • Никишин Владимир Борисович
  • Чеботаревский Юрий Викторович
  • Чигирев Петр Григорьевич
RU2316782C1
СПОСОБ ОПРЕДЕЛЕНИЯ ЛОКАЛЬНЫХ СМЕЩЕНИЙ МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ 2001
  • Плотников П.К.
  • Синев А.И.
  • Рамзаев А.П.
  • Никишин В.Б.
RU2206871C2
ВНУТРИТРУБНЫЙ СНАРЯД-ДЕФЕКТОСКОП С ОДОМЕТРАМИ 2005
  • Синев Андрей Иванович
  • Плотников Петр Колестратович
  • Никишин Владимир Борисович
RU2306479C2
СИСТЕМА ДЛЯ ОПРЕДЕЛЕНИЯ КООРДИНАТ ТРАССЫ И КООРДИНАТ ДЕФЕКТОВ ПОДЗЕМНОГО ТРУБОПРОВОДА 2004
  • Андропов А.В.
  • Кокорин В.И.
RU2261424C1
АППАРАТ ВНУТРИТРУБНОГО КОНТРОЛЯ И СПОСОБ ПЕРЕМЕЩЕНИЯ ЕГО В МАГИСТРАЛЬНОМ ГАЗОПРОВОДЕ С ЗАДАННОЙ РАВНОМЕРНОЙ СКОРОСТЬЮ 2010
  • Натаров Борис Николаевич
  • Эндель Иосиф Абрамович
  • Горбунова Светлана Владимировна
  • Комаров Александр Федорович
  • Ильенко Константин Викторович
  • Заиграев Виктор Владимирович
  • Геча Владимир Яковлевич
  • Захаренко Андрей Борисович
  • Самокрутов Андрей Анатольевич
  • Шевалдыкин Виктор Гаврилович
  • Алехин Сергей Геннадьевич
RU2451867C2

Реферат патента 2017 года ВНУТРИТРУБНЫЙ СНАРЯД-ДЕФЕКТОСКОП

Изобретение относится к области метрологии, в частности к средствам неразрушающего контроля. Внутритрубный снаряд-дефектоскоп содержит цилиндрический гермоконтейнер, опорные элементы в виде эластичных манжет, датчики, расположенные снаружи по периметру гермоконтейнера и соединенные с размещенным внутри гермоконтейнера электронным блоком. Устройство содержит блок питания, приборы ориентации, навигации, блок регистратора, систему измерения пройденного пути в виде трех подпружиненных колес, расположенных под углом 120° друг к другу. Каждое колесо снабжено акустическим преобразователем, закрепленным на оси каждого подпружиненного колеса под углом 30°-60° к центральной оси снаряда-дефектоскопа. В гермоконтейнере установлены три измерителя пройденного пути и сумматор, при этом каждый преобразователь соединен кабелем с входом соответствующего измерителя пройденного пути, а выход каждого измерителя пройденного пути соединен с соответствующим входом сумматора, выход которого соединен с блоком регистратора. Измеритель содержит генератор гармонического сигнала, цифровой измеритель доплеровского сдвига частоты, вычислитель скорости движения, вычислитель пройденного пути. Выход генератора гармонического сигнала соединен с преобразователем и входом цифрового измерителя доплеровского сдвига частоты. Технический результат - повышение точности измерения пройденного пути. 6 ил.

Формула изобретения RU 2 606 205 C1

Внутритрубный снаряд-дефектоскоп, содержащий цилиндрический гермоконтейнер, опорные элементы, включающие в себя переднюю и заднюю эластичные манжеты, установленные на краях гермоконтейнера, дефектоскопические датчики, расположенные снаружи по периметру гермоконтейнера и соединенные с размещенным внутри гермоконтейнера электронным блоком, содержащим блок питания, приборы ориентации, навигации и блок регистратора, систему измерения пройденного пути, снабженную подпружиненными колесами и закрепленную в задней части гермоконтейнера, отличающийся тем, что система измерения пройденного пути выполнена в виде трех подпружиненных колес, расположенных под углом 120° друг к другу, причем каждое колесо снабжено акустическим преобразователем, закрепленным на оси каждого подпружиненного колеса под углом 30°-60° к центральной оси снаряда-дефектоскопа, размещенные в гермоконтейнере три измерителя пройденного пути и сумматор, при этом каждый преобразователь соединен кабелем с входом соответствующего измерителя пройденного пути, а выход каждого измерителя пройденного пути соединен с соответствующим входом сумматора, выход которого соединен с блоком регистратора, причем каждый измеритель пройденного пути содержит генератор гармонического сигнала, последовательно соединенные цифровой измеритель доплеровского сдвига частоты, вычислитель скорости движения, вычислитель пройденного пути, при этом выход генератора гармонического сигнала соединен с преобразователем и входом цифрового измерителя доплеровского сдвига частоты.

Документы, цитированные в отчете о поиске Патент 2017 года RU2606205C1

ВНУТРИТРУБНЫЙ СНАРЯД-ДЕФЕКТОСКОП С КОЛЕСНЫМИ ОДОМЕТРАМИ 2007
  • Синев Андрей Иванович
  • Никишин Владимир Борисович
  • Чигирев Петр Григорьевич
  • Плотников Петр Колестратович
RU2334980C1
US 4945775 A1, 07.08.1990
US 4202216 A1, 13.05.1980
DE 3612498 A, 29.10.1987
WO 1997012237 A1, 03.04.1997
CN 103604022 A, 26.02.2014
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ РАДИОАКТИВНОСТИ ВЕЩЕСТВА 1929
  • Воронов Л.Н.
SU22825A1
JP 2002302033 A, 15.10.2002
US 3539915 A1,10.11.1970.

RU 2 606 205 C1

Авторы

Миронов Михаил Арсеньевич

Жвания Ирина Александровна

Денисов Дмитрий Михайлович

Свадковский Андрей Николаевич

Пятаков Павел Александрович

Волков Андрей Юрьевич

Биндер Яков Исаакович

Гутников Александр Леонидович

Падерина Татьяна Владимировна

Молочко Андрей Викторович

Даты

2017-01-10Публикация

2015-07-13Подача