БИОСОВМЕСТИМЫЙ НАНОМАТЕРИАЛ ДЛЯ ФОТОСЕНСИБИЛИЗАЦИИ СИНГЛЕТНОГО КИСЛОРОДА И СПОСОБ ЕГО ПОЛУЧЕНИЯ Российский патент 2017 года по МПК A61K9/51 A61K47/42 C01G11/02 B82B3/00 

Описание патента на изобретение RU2607579C2

Изобретение относится к областям медицины и биологии и может быть использовано в методе фотодинамической терапии (ФДТ) онкологических заболеваний.

В современной онкологии, наряду с хирургией, различными радиоизотопными методами, химиотерапией и т.п. признано перспективным направление фотодинамической терапии (ФДТ). В ФДТ исходным действующим агентом является высокоактивный синглетный кислород 1O2. Его действие губительно для раковых клеток [Захаров С.Д. Светокислородный эффект в клетках и перспективы его применения в терапии опухолей / С.Д. Захаров, А.В. Иванов // Квантовая электроника. 1999. Т. 29, №3. С. 192-197], а также положительно для детоксикации организма, стимуляции обменных и регенеративных процессов в тканях и фотобактерицидных целей [А.А. Красновский, Фотодинамическая регуляция биологических процессов. Проблемы регуляции в биологических системах, Под общей ред. А.Б. Рубина. М.: Ижевск, (2006)]. Продуцирование синглетного кислорода светом в больных тканях и клетках возможно только в присутствии фотосенсибилизаторов, поскольку прямой фотопереход 3О21О2 запрещен по орбитальным и спиновым правилам отбора [Шинкаренко Н.В. Синглетный кислород, методы получения и обнаружения / Н.В. Шинкаренко, В.Б. Алесковский // Успехи химии. 1981. T.L. В.3. С. 406-427; Захаров, С.Д. Светокислородный эффект в клетках и перспективы его применения в терапии опухолей / С.Д. Захаров, А.В. Иванов // Квантовая электроника. 1999. Т. 29, №3. С. 192-197].

В качестве фотосенсибилизаторов наибольшее распространение пока получили гетероциклические органические красители, обладающие высоким выходом триплетов. Однако их успешному использованию препятствуют низкопороговая фотодеградация, часто необратимая, а также склонность к внутри- и межмолекулярным взаимодействиям, приводящим к формированию новых форм красителя. В результате спектральные условия фотосенсибилизации нарушаются [А.А. Красновский, Фотодинамическая регуляция биологических процессов. Проблемы регуляции в биологических системах, Под общей ред. А.Б. Рубина. М.: Ижевск, (2006)]. Следовательно, разработка новых более устойчивых к окружению и действию света фотосенсибилизаторов синглетного кислорода для терапии онкологических заболеваний является крайне важным и необходимым предметом исследований в области интегрированных нано- и биотехнологий [С.Д. Захаров, А.В. Иванов, Квантовая электроника. 29, №3. 192-197, (1999); А.А. Красновский, Фотодинамическая регуляция биологических процессов. Проблемы регуляции в биологических системах, Под общей ред. А.Б. Рубина. М.: Ижевск, (2006); A. Fernandez-Fernandez, R. Manchanda, A.J. McGoron, Appl. Biochem. Biotechnol, 165, №7-8, 1628-1651, (2011)].

На сегодняший день реализованы конструкции фотосенсибилизаторов синглетного кислорода на основе фуллеренов [US 5866316, 02.02.1999], кремниевых нанокристаллов [JP 20020176515, 18.06.2002; RU 2329061, 20.07.2008], металлопорфиринов, органических красителей (метиленовый голубой, тионин и др.) и их производных [US 20120302557, 29.11.2012], а также композитов на основе светоизлучающих наночастиц в сочетании с молекулами органических фотосенсибилизаторов [US 20020127224, 12.09.2002].

Так, в патенте US 5866316, 02.02.1999 предложен метод получения фотосенсибилизатора синглетного кислорода на основе фуллеренов С60 в растворе, которые характеризуются квантовым выходом сенсибилизации синглетного кислорода, близким к единице и обладают низкой токсичностью. Однако существенным недостатком фуллеренов, полученных описанным способом, является гидрофобность, а также склонность к агрегации в необходимых для сенсибилизации синглетного кислорода концентрациях, что накладывает ограничения на применение подобного фотосенсибилизатора в ФДТ.

Часть недостатков фотосенсибилизатора, предложенного в патенте US 5866316, 02.02.1999, устранена в патенте RU 2329061, 20.07.2008, где авторы предлагают использовать нанокомпозиты на основе кремниевых нанокристаллов размером 2-100 нм с адсорбированными на поверхности молекулами фуллерена при относительном содержании фуллерена от 0.3 до 4% по весу. Недостатком данного изобретения является использование токсичных растворителей (например, тетрахлорида углерода) при синтезе нанокристаллов кремния. Удовлетворительные приемы очистки синтезируемых нанокристаллов, позволяющие их активно использовать в медицине и биологии, отсутствуют.

Использование органических красителей в качестве фотосенсибилизаторов синглетного кислорода хорошо известно [Methylene blue in photodynamic therapy: From basic mechanisms to clinical applications / Joao Paulo Tardivo, Auro Del Giglio, Carla Santos de Oliveira, Dino Santesso Gabrielli, Helena Couto Junqueira, Dayane Batista Tada, Divinomar Severino, Rozane de Fatima Turchiello, Mauricio S. Baptista Ph.D. // Photodiagnosis and Photodynamic Therapy (2005) 2, 175-191; Баштанов M.E. Влияние растворителей на квантовую эффективность индуцированной синглетным кислородом замедленной флуоресценции фталоцианина при лазерном возбуждении / М.Е. Баштанов, А.А. Красновский // Квантовая электроника. 1999. Т. 26. № 2. С. 163-167]. Так, в патенте US 20120302557, 29.11.2012, описан метод использования растворов метиленового голубого и его производных для ФДТ. Использование растворов метиленового голубого для ФДТ имеет ряд недостатков. Например, ввиду высокой растворимости молекул метиленового голубого при его введении в организм человека возможно распространение вне воздействуемых органов и тканей. Кроме того, использованию растворов метиленового голубого для ФДТ препятствуют трудности, связанные как с низкопороговой фотодеградацией, часто необратимой, так и внутри- и межмолекулярными взаимодействиями, приводящими к формированию новых форм красителя и нарушению спектральных условий сенсибилизации [Красновский А.А. (мл.) Фотодинамическая регуляция биологических процессов // Проблемы регуляции в биологических системах / Под общей ред. А.Б. Рубина. М.: Ижевск. 2006. 480 с.]. Для избежания нежелательных последствий необходимо сопряжение красителя с различными агентами.

Наиболее близким аналогом изобретения является предложенный в патенте US 20020127224, опубликованном 12.09.2002, материал для применения в ФДТ на основе агрегатов различных светоизлучающих полупроводниковых наночастиц (нанокристаллов, квантовых точек, квантовых стержней) и органических фотосенсибилизаторов. При поглощении кванта света происходит возбуждение наночастиц с последующим переносом энергии возбуждения от наночастиц к молекулам фотосенсибилизатора. Фотосенсибилизатор отдает энергию молекулам триплетного кислорода и они переходят в возбужденное синглетное состояние. В качестве наночастиц предлагается использовать CdSe/ZnS либо их смеси с наночастицами TiO2, а в качестве фотосенсибилизаторов различные уже применяемые препараты для лечения онкологических заболеваний, в том числе белковые ингибиторы (тропонин, ангиостатин и др.), различные энзимы, различные красители (methylene blue (метиленовый голубой), индоцианин зеленый и др.) и т.д.

Данный материал обладает рядом недостатков: отсутствуют данные о возможности генерации такими системами синглетного кислорода, предполагается использование квантовых точек, синтезированных с применением высокотоксичного триоктилфосфиноксида (ТОРО), гидрофобность получаемых в таком случае коллоидных растворов, для преодоления которой необходимо введение дополнительных технологических процедур, например, сопряжения наночастиц с веществами меркапто группы (меркаптоуксусной кислотой и др.), что приводит к усложнению технологии и удорожанию конечного продукта, отсутствуют сведения о конкретной реализации предложенного принципа.

Задачей данного изобретения является разработка биосовместимого наноматериала, обладающего способностью фотосенсибилизировать процесс образования синглетного кислорода и способа его получения.

Технический результат настоящего изобретения заключается в расширении арсенала фотосенсибилизаторов синглетного кислорода для фотодинамической терапии.

Технический результат достигается тем, что биосовместимый наноматериал для фотосенсибилизации синглетного кислорода представляет собой низкотоксичные гибридные ассоциаты люминесцирующих коллоидных квантовых точек CdS с катионами метиленового голубого (МВ+) в соотношении 10-1-10-4краситCdS), а способ его получения включает двуструйное сливания 0,6-5% раствора сульфида натрия и 0,8-7% раствора бромида кадмия в термостатируемом реакторе, с расплавом желатины при постоянной температуре 40°C, согласно изобретению, вводят в полученный коллоидный раствор, содержащий коллоидные квантовые точки CdS, на завершающей стадии кристаллизации квантовых точек раствор катионов МВ+ в соотношении 10-1-10-4краситCdS), с последующим охлаждением полученного золя до температуры от 4 до 10°C, раствор выдерживают при данной температуре на протяжении суток, после чего полученный желатиновый студень измельчают до размера гранул 5-10 мм, промывают в дистиллированной воде при температуре от 7 до 13°C в течение 30 мин, после чего сцеживается лишняя вода и гранулы нагреваются до температуры свыше 40°C.

В результате получают однородный расплав.

Используют водорастворимые коллоидные квантовые точки сульфида кадмия, синтезированные с помощью низкотемпературного золь-гель метода с использованием низкотоксичных компонентов синтеза в специальном термостатируемом реакторе (Патент на полезную модель РФ 134445, от 20.11.2013). Сопряжение катионов метиленового голубого (МВ+) с коллоидными КТ CdS приводит к увеличению длительности процесса фотосенсибилизации синглетного кислорода за счет блокирования механизмов фотодеградации метиленового голубого, а также предотвращения перехода красителя в другие протолитические и агрегатные формы, не пригодные для фотосенсибилизации синглетного кислорода.

На фиг. 1 приведена модель фотофизических процессов, происходящих при сенсибилизации процесса продуцирования синглетного кислорода катионами МВ+, сопряженным с КТ CdS.

На фиг. 2 представлены спектры: поглощения коллоидных КТ CdS - 1; люминесценции коллоидных КТ CdS - 2; люминесценции ассоциатов коллоидных КТ CdS с катионами метиленового голубого (МВ+), в соотношении 10-2краситCdS) - 3. На врезке приведены: электронная фотография коллоидных КТ CdS, распределение по размеру коллоидных КТ CdS и рентгеновская дифракция коллоидных КТ CdS.

На фиг. 3 представлены спектры люминесценции синглетного кислорода в растворах: катионов МВ+ при λвозб=660 нм - 1; ассоциатов коллоидных КТ CdS с катионами МВ+ в соотношении 10-2краситCdS) при λвозб=660 нм - 2; катионов МВ+ при λвозб=405 нм - 3; ассоциатов коллоидных КТ CdS с катионами MB+ в соотношении 10-2краситCdS) при λвозб=405 нм - 4. На врезке приведены зависимости продуцирования 1О2 от времени в растворах катионов МВ+ - 1 и ассоциатов коллоидных КТ CdS с катионами MB+ в соотношении 10-2краситCdS).

На фиг. 4 приведена таблица интенсивности дыхания крыс Rattus norvegicus в зависимости присутствия КТ CdS, катионов МВ+ и гибридных ассоциатов коллоидных КТ CdS с катионами МВ+.

На фиг. 5 представлены временные диаграммы поглощение кислорода изолированными митохондриями печени крыс в присутствии КТ CdS, катионов МВ+ и гибридных ассоциатов коллоидных КТ CdS с катионами МВ+.

На фиг. 6 приведена гистограмма отражающая влияние КТ CdS, катионов МВ+ и гибридных ассоциатов коллоидных КТ CdS с катионами МВ+ на генерацию перекиси водорода митохондриями печени крыс.

Физический принцип функционирования предложенного биосовместимого наноматериала для продуцирования синглетного кислорода заключается в следующем. Предлагаемый наноматериал обеспечивает возможность получения синглетного кислорода под действием излучения из двух диапазонов (фиг. 1): излучением с длиной волны 600-750 нм, которое соответствует области поглощения катионов метиленового голубого (МВ+), и 380-450 нм, приходящимся на область поглощения квантовых точек CdS. В первом случае при поглощении кванта света непосредственно катионами метиленового голубого (МВ+) (600-750 нм) энергия от молекулы красителя передается кислороду, переводя его из основного триплетного состояния в одно из возбужденных синглетных состояний, при этом наблюдается тушение люминесценции красителя в полосе триплетов. Энергия триплетного уровня возбуждения метиленового голубого 1.47 эВ и при его тушении может происходить только переход в первое синглетное состояние молекулы кислорода [Красновский, А.А. мл. Фотосенсибилизированная люминесценция синглетного кислорода в растворе. / А.А. Красновский // Биофизика. 1976. Т.21. N.4. С. 748-749, Krasnovsky, А.А. Jr. Photoluminescence of singlet oxygen in pigment solutions / A.A. Krasnovsky Jr.: Photochem. Photobiol. 1979. V. 29. № 1. P. 29-36]. Из синглетного состояния молекула кислорода переходит с излучением (λ=1270 нм) в свое основное триплетное состояние. Наличие свечения в этой области позволяет контролировать образование синглетного кислорода. Во втором случае более коротковолновое излучение (380-450 нм) поглощается квантовой точкой CdS, энергия возбуждения которой передается катионам метиленового голубого (МВ+). Далее энергия, запасенная в катионах метиленового голубого (МВ+), передается молекулам кислорода, переводя его из основного триплетного состояния в одно из возбужденных синглетных состояний.

Для получения биосовместимого наноматериала для фотосенсибилизации синглетного кислорода производится следующая последовательность операций. Для синтеза полупроводниковых коллоидных квантовых точек используется 1-5% раствор сульфида натрия и 1.1-7% раствор бромида кадмия в дистиллированной воде температурой от 7 до 13°C; 2.5-5% раствор полимера в дистиллированной воде загружается в реактор однократно до сливания растворов сульфида натрия и бромида кадмия при температуре 20-30°C, причем объем растворов - сульфида натрия: бромида кадмия: полимера 1:1:4, раствор желатина нагревается до 40-90°C, в реактор заливается 96%-этанол 2.5% от объема раствора желатина, после чего производят двуструйное сливание растворов сульфида натрия и бромида кадмия в реактор при постоянном перемешивании со скоростью 100-600 об/мин, по окончании сливания осуществляют перемешивание на протяжении 1-300 мин.

На завершающей стадии кристаллизации коллоидных квантовых точек CdS диспергированых в желатине добавляется раствор метиленового голубого в соотношении 10-l÷10-4краситCdS)

После указанных процедур проводится охлаждение раствора до температуры от 4 до 10°C и раствор выдерживается при данной температуре на протяжении суток, после чего охлажденный раствор измельчают до размера гранул 5-10 мм, промывка проводится погружением в дистиллированную воду при температуре от 7 до 13°C на 30 мин, после чего сцеживается лишняя вода и гранулы нагреваются до температуры свыше 40°C для получения однородного расплава.

В результате получается биосовместимый наноматериал для фотосенсибилизации синглетного кислорода, представляющий собой гибридные ассоциаты коллоидных КТ CdS размером 2-4 нм с катионами метиленового голубого МВ+ в соотношении 10-1-10-4краситCdS).

Формирование коллоидных КТ CdS подтверждается данными рентгеноской дифракции и просвечивающей электронной микроскопии (фиг. 2, врезка). Наличие гибридной ассоциации КТ CdS с катионами МВ+ подтверждается наличием провала в спектре люминесценции ассоциатов КТ CdS с катионами МВ+, приходящегося на область поглощения красителя, которого не наблюдалось в спектре люминесценции чистых КТ CdS (фиг. 2).

Фотосенсибилизация синглетного кислорода предлагаемым биосовместимым наноматериалом подтверждалась наличием полосы в районе 1270 нм, соответствующей люминесценции синглетного кислорода (фиг. 3).

Для установления биосовместимости предлагаемого наноматериала проводилась оценка уровня и скорости потребления кислорода у крыс Rattus norvegicus L. (Wistar) возрастом 5 месяцев, так как изменение интенсивности дыхания свидетельствует не только об эффективной, но и безопасной интенсификации работы электрон-транспортной цепи (ЭТЦ).

Для введения наноматериала в организм животных был выбран пероральный путь. Измерение скорости дыхания in vivo проводили с помощью оксиметра Vernier LabQuest (Vernier, США), оснащенного кислородным и углекислотным сенсорами. Животные получали 100 мг терапевтической композиции, через 24 часа осуществляли первое измерение. Выбранная доза не являлась токсической для животных. В течение срока эксперимента смертности среди крыс не наблюдалось. Масса тела также оставалась неизменной. Животные содержались при стандартной температуре 22°C, 12 часовом световом цикле в замкнутом герметичном объеме и перед началом экспериментов содержание кислорода в этом пространстве достигало 18-20%, как в обычной атмосфере.

Данные об оценке уровня и скорости потребления газообразного кислорода лабораторными крысами Rattus norvegicus линии Wistar обобщены в таблице 1. Снижение скорости потребления кислорода в условиях терапии квантовыми точками представляется незначительным и находящимся в пределах статистической погрешности.

КТ CdS и метиленовый голубой оказывают стимулирующее влияние на дыхание изолированных митохондрий печени крыс. При этом вид респираторной кривой не отклоняется от стандартного, что говорит о нормальной реакции митохондрий на присутствие препарата квантовых точек в среде регистрации (Фиг. 5). Поглощение кислорода изолированными митохондриями печени крысы в присутствии квантовых точек, метиленового голубого и гибридных ассоциатов КТ CdS с катионами МВ+ демонстрирует отсутствие токсического эффекта наноматериала (угнетения клеточного дыхания).

Исследование на изолированных митохондриях печени крыс в присутствии красителя метиленового голубого, КТ CdS и гибридных ассоциатов КТ CdS с катионами МВ+ генерации перекиси водорода как основного представителя группы активных форм кислорода, образуемых митохондриями, показало увеличение продукции активных форм кислорода в присутствии наноматериала (фиг. 6). Данный факт указывает на фотосенсибилизированное образование активных форм кислорода в митохондриях в присутствии красителя метиленового голубого, КТ CdS и гибридных ассоциатов КТ CdS с катионами МВ+. При этом дальнейшие добавки к митохондриям ротенона, индуцирующего обратный ток электронов и антимицина, блокирующего Q-цикл, показали, что митохондрии в каждом случае отвечали на них сходным паттерном изменении скорости продукции перекиси, соответствующим таковому в норме. Этот факт свидетельствует о сохранении респираторной активности митохондрий, их молекулярной организации и, таким образом, биосовместимости наноматериала.

Похожие патенты RU2607579C2

название год авторы номер документа
Способ получения состава для антимикробного покрытия на основе ассоциатов нанокристаллов сульфида серебра с молекулами метиленового голубого 2020
  • Овчинников Олег Владимирович
  • Смирнов Михаил Сергеевич
  • Перепелица Алексей Сергеевич
  • Кондратенко Тамара Сергеевна
  • Гревцева Ирина Геннадьевна
  • Попов Василий Николаевич
  • Шуваева Галина Павловна
  • Корнеева Ольга Сергеевна
RU2750232C1
СПОСОБ ПОЛУЧЕНИЯ ПОЛУПРОВОДНИКОВЫХ КОЛЛОИДНЫХ КВАНТОВЫХ ТОЧЕК СУЛЬФИДА КАДМИЯ 2013
  • Овчинников Олег Владимирович
  • Смирнов Михаил Сергеевич
  • Шапиро Борис Исаакович
  • Шатских Тамара Сергеевна
  • Перепелица Алексей Сергеевич
  • Дедикова Анна Олеговна
RU2540385C2
Фотосенсибилизатор на основе полупроводниковых квантовых точек и хлорина е6 2015
  • Баранов Александр Васильевич
  • Вишератина Анастасия Константиновна
  • Громова Юлия Александровна
  • Гунько Юрий Кузьмич
  • Маслов Владимир Григорьевич
  • Орлова Анна Олеговна
  • Фёдоров Анатолий Валентинович
RU2629390C2
Комплекс для детекции и направленного разрушения клеток 2019
  • Набиев Игорь Руфаилович
  • Самохвалов Павел Сергеевич
RU2743993C1
НАБОР ДЛЯ ПРОВЕДЕНИЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ 2019
  • Соколов Павел Михайлович
  • Набиев Игорь Руфаилович
  • Нифонтова Галина Олеговна
RU2740552C1
СПОСОБ ПОЛУЧЕНИЯ ПОЛУПРОВОДНИКОВЫХ КОЛЛОИДНЫХ КВАНТОВЫХ ТОЧЕК СУЛЬФИДА СЕРЕБРА 2013
  • Овчинников Олег Владимирович
  • Смирнов Михаил Сергеевич
  • Шапиро Борис Исаакович
  • Шатских Тамара Сергеевна
  • Перепелица Алексей Сергеевич
  • Хохлов Владимир Юрьевич
RU2538262C1
НАНОКОМПОЗИТНЫЙ ФОТОСЕНСИБИЛИЗАТОР ДЛЯ МЕТОДА ФОТОДИНАМИЧЕСКОГО ВОЗДЕЙСТВИЯ НА КЛЕТКИ 2006
  • Гуртов Валерий Алексеевич
  • Кузнецов Сергей Николаевич
  • Пикулев Виталий Борисович
  • Сарен Андрей Александрович
RU2329061C1
СПОСОБ ФОТОИНАКТИВАЦИИ ВИРУСА ГРИППА А ПТИЦ ПОДТИПА H5N1 2007
  • Ворожцов Георгий Николаевич
  • Зубаиров Муртазали Мухтарович
  • Калия Олег Леонидович
  • Кузнецова Нина Александровна
  • Кузьмин Сергей Георгиевич
  • Лужков Юрий Михайлович
  • Лукьянец Евгений Антонович
  • Негримовский Владимир Михайлович
  • Рубин Андрей Борисович
  • Селянинов Юрий Олегович
  • Страховская Марина Глебовна
  • Южакова Ольга Алексеевна
RU2357770C1
ФОТОСЕНСИБИЛИЗАТОР ДЛЯ АНТИМИКРОБНОЙ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ 2012
  • Плавский Виталий Юльянович
  • Третьякова Антонина Ивановна
  • Плавская Людмила Геннадьевна
  • Микулич Александр Васильевич
RU2497518C1
Способ профилактического лечения коронавирусной инфекции 2020
  • Никонов Сергей Данилович
  • Воевода Михаил Иванович
  • Майоров Александр Петрович
  • Пасман Наталья Михайловна
  • Гельфонд Марк Львович
RU2777462C2

Иллюстрации к изобретению RU 2 607 579 C2

Реферат патента 2017 года БИОСОВМЕСТИМЫЙ НАНОМАТЕРИАЛ ДЛЯ ФОТОСЕНСИБИЛИЗАЦИИ СИНГЛЕТНОГО КИСЛОРОДА И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Группа изобретений относится к области медицины, в частности к онкологии, и описывает биосовместимый наноматериал и способ его получения. Предлагаемый биосовместимый наноматериал представляет собой гибридные ассоциаты коллоидных квантовых точек CdS средними размерами 2-4 нм с катионами метиленового голубого (МВ+) в концентрации 10-1-10-4 краситCdS). Способ включает двуструйное сливание 0,6-5% раствора сульфида натрия и 0,8-7% раствора бромида кадмия с расплавом желатины с получением коллоидного раствора, содержащего коллоидные квантовые точки CdS, раствор выдерживают при температуре 4- 10°C, полученный желатиновый студень измельчают до размера гранул 5-10 мм, промывают в дистиллированной воде при температуре от 7 до 13°C в течение 30 мин, сцеживают лишнюю воду и гранулы нагреваются до температуры свыше 40°C. Наноматериал обладает высокой эффективностью генерации синглетного кислорода и удовлетворительными параметрами цитотоксичности, свидетельствующими о его биосовместимости. Изобретение может быть использовано в медицине и биологии для фотодинамической терапии онкологических и других заболеваний человека. 2 н.п. ф-лы, 6 ил.

Формула изобретения RU 2 607 579 C2

1. Биосовместимый наноматериал для фотосенсибилизации синглетного кислорода, представляет собой низкотоксичные гибридные ассоциаты люминесцирующих коллоидных квантовых точек CdS размером 2-4 нм с катионами метиленового голубого МВ+ в соотношении 10-1-10-4краситCdS).

2. Способ получения биосовместимого наноматериала по п.1 для фотосенсибилизации синглетного кислорода включает двуструйное сливания 0,6-5% раствора сульфида натрия и 0,8-7% раствора бромида кадмия в термостатируемом реакторе с расплавом желатины при постоянной температуре 40°C, характеризующийся тем, что вводят в полученный коллоидный раствор, содержащий коллоидные квантовые точки CdS, на завершающей стадии кристаллизации квантовых точек раствор катионов МВ+ в соотношении 10-1-10-4краситCdS), с последующим охлаждением полученного золя до температуры от 4 до 10°C, раствор выдерживают при данной температуре на протяжении суток, после чего полученный желатиновый студень измельчают до размера гранул 5-10 мм, промывают в дистиллированной воде при температуре от 7 до 13°C в течении 30 мин, сцеживают лишнюю воду и гранулы нагреваются до температуры свыше 40°C.

Документы, цитированные в отчете о поиске Патент 2017 года RU2607579C2

US 20020127224, 12.09.2002
T.S.SHATSKIKH et al, Luminescence of hybride associatesof CdS, Zn0,5Cd0,5S, Ag2S quantum dots with methylene blue, Luminescence, 2012, v
Прибор с двумя призмами 1917
  • Кауфман А.К.
SU27A1
Ножной переключатель для перемены направления вращения электродвигателя 1921
  • Ардабьевский И.И.
SU534A1
ОВЧИННИКОВ О.В
и др., Спектральные свойства диспергированных в желатине квантовых точек CdS и их ассоциатов с молекулами красителей, Теоретическая и экспериментальная химия, 2012, т
Приспособление для автоматической односторонней разгрузки железнодорожных платформ 1921
  • Новкунский И.И.
SU48A1
Зубчатое колесо со сменным зубчатым ободом 1922
  • Красин Г.Б.
SU43A1
CN 101759946 A, 30.06.2010
СПОСОБ ПОЛУЧЕНИЯ ПОЛУПРОВОДНИКОВЫХ КОЛЛОИДНЫХ КВАНТОВЫХ ТОЧЕК СУЛЬФИДА КАДМИЯ 2013
  • Овчинников Олег Владимирович
  • Смирнов Михаил Сергеевич
  • Шапиро Борис Исаакович
  • Шатских Тамара Сергеевна
  • Перепелица Алексей Сергеевич
  • Дедикова Анна Олеговна
RU2540385C2

RU 2 607 579 C2

Авторы

Овчинников Олег Владимирович

Смирнов Михаил Сергеевич

Шатских Тамара Сергеевна

Шапиро Борис Иссакович

Попов Василий Николаевич

Башмаков Виктор Юрьевич

Хохлов Владимир Юрьевич

Перепелица Алексей Сергеевич

Даты

2017-01-10Публикация

2014-10-10Подача