Изобретение относится к аналитической химии и может быть использовано для определения наличия азотсодержащих противомикробных препаратов (изиниазида, этамбутола и др.) и антибиотиков (цефалоспоринового ряда - цефазолина, цефатоксима, цефуроксима, цефалексина, пеницилинового ряда, пиразинаммида и др.) в исследуемых жидких средах, например, для токсикологического и технического анализа лекарственных средств, в медицине для определения концентрации этих веществ в биосистемах (сыворотке крови, слюне и др.) с целью регулирования введения оптимальных их доз при лечении различных инфекционных заболеваний, при исследовании фармакокинетики и др. Изобретение может быть также применено для определения присутствия указанных противомикробных препаратов и антибиотиков в пищевых продуктах, сточных водах фармацевтических производств.
Притивомикробные препараты и антибиотики применяются в медицине, ветеринарии, пищевой промышленности при консервировании, для обработки пищевых продуктов при их транспортировке. В связи с этим требуется контроль их содержания в лекарственных формах, а также определение их содержания в биологических жидкостях организма человека и животных, продуктов питания, сточных водах фармацевтических предприятий и других объектах.
Известны различные способы количественного определения притивомикробных препаратов и антибиотиков: микробиологические, спектрофотометрические, флуориметрические, хемилюминесцентные, различные варианты хроматографических методов, в т.ч. высокоэффективная жидкостная хроматография (ВЭЖХ), хроматомасспектрометрия, инверсионная вольтамперометрия, электроаналитическое определение с модифицированными электродами.
Однако для проведения экспрессного анализа биоцидных азотсодержащих органических соединений (противомикробных препаратов и антибиотиков) предпочтительным является использование способов, основанных на использовании определенных свойств антибиотиков: вступать в реакции, сопровождающиеся образованием окрашенных соединений.
Известны спектрофотометрические методы определения антибиотиков, в основном, в лекарственных средах. В частности, известен спектрофотометрический способ определения антибиотиков пенициллиновой группы - ампициллина, амоксициллина, клоксациллина, сулбенициллина, карбенициллина, тикарциллина в готовых лекарственных формах [Amin A.S. Pyrocatechol violet in pharmaceutical analysis. Part I.A spectrophotometric method for the determination of some - Mactam antibiotics in pure and in pharmaceutical dosage forms // Farmaco. - 2001. - V. 56, №3. - P. 211-218], основанный на измерении поглощения (=323-346 нм) продуктом реакции пенициллинов с раствором 1,2,4-триазола, содержащим хлорид ртути (II). Данный способ применим преимущественно для определения вещества в лекарственных формах, составляющих его основу.
Известны спектрофотометрический и спектрофлуориметрический способы определения четырех пенициллинов (амоксициллина, бакампициллина, пиперациллина и сультамициллина) и десяти цефалоспориновых антибиотиков в фармацевтических препаратах, которые основаны на окислении антибиотиков церием(IV) в среде ОДМ H2SO4 при 100°С. Способы включают операцию измерения уменьшения светопоглощения церия (IV) при =317 нм или интенсивности флуоресценции образовавшегося церия(III) при длинах волн возбуждения и испускания 256 и 356 нм соответственно [El Walily М., Gazy A., Belal S. Use of cerium(IV) in the spectrophotometric and spectrofluorimetric determinations of penicillins and cephalosporins in their pharmaceutical preparations // Spectrosc Lett, 2000. - Vol. 33. - №6. - P. 931-948].
Известен спектрофотометрический способ определения ампициллина, амоксициллина и карбенициллина с применением фенольного реактива Фолина-Чокальтеу [Ахмад А.С., Рахман Н., Ислам Ф. Спектрофотометрическое определение ампициллина, амоксициллина и карбенициллина с применением фенольного реактива Фолина-Чокальтеу // Журн. аналит. химии, 2004. - Т. 12. - №2. - С. 138-142]. Смесь определяемых пенициллинов с реактивом при рН 2,25 нагревают в термостатируемой водяной бане при 95±2°С и возникающую синюю окраску образующихся гетерополисоединений измеряют спектрофотометрически при =750 нм для ампициллина и карбенициллина и при =770 нм для амоксициллина.
Однако фармакокинетические исследования, проводимые на биологических средах, требуют определения низких концентраций антибиотиков Cmin<10 мкг/мл, а, следовательно, для данных целей необходим более чувствительный и экспрессный метод.
Данные способы, предназначенные для определения антибиотиков в лекарственных средах, длительны и трудоемки и в силу недостаточной чувствительности не могут быть использованы для анализа биологических жидкостей организма человека и животных, продуктов питания, сточных вод фармацевтических предприятий и других объектов.
Известен способ определения натриевых солей цефотаксима и моногидрата цефадроксила в двух составляющих смесях методом производной спектрофотометрии [Morelli В. Derivative spectrophotometry in the analysis of mixtures of cefotaxime sodium and cefadroxil monohydrate // J Pharm and Biomed Anal., 2003. - Vol. 32. - №2. - P. 257-267]. Способ заключается в снятии спектров поглощения антибиотиков и оценке первой и второй производных спектров поглощения. Пределы чувствительности от 0,28 до 0,51 мг/мл.
Наиболее близким к предлагаемому техническому решению является спектрофотометрический способ количественного определения пенициллиновых антибиотиков в лекарственных средах, основанный на использовании гидроксамовой реакции при =475 нм [Красникова А.В., Иозеп А.А. Спектрофотометрическое определение пенициллиновых антибиотиков // Хим. фарм. журн., 2003. - Т. 37. - №9. - С. 49-51]. Ацильные соединения, реагируя с гидроксиламином, превращаются в гидроксамовые кислоты, которые с солями железа(III) образуют окрашенные комплексы. Способ заключается в приготовлении растворов антибиотиков, добавлении гидроксиламина для разрушения лактамного кольца в молекулах пенициллинов с образованием гидроксамовых кислот, добавлении хлорида железа для образования окрашенного комплекса пенициллинов с ионами железа и измерении оптической плотности окрашенных соединений антибиотиков с ионами железа(III). Количественное содержание антибиотиков определяют по градуировочному графику. Для построения градуировочного графика используют следующую методику. Получают окрашенные комплексы к точной навеске (от 2 до 6⋅10-3 г) антибиотика добавлением 0,4 мл щелочного раствора гидроксиламина, который получают смешением 2 мл 2 М раствора гидроксиламина гидрохлорида с 1,2 мл 4 н. раствора гидроксида натрия и 0,8 мл 2 н. раствора карбоната калия. Смесь оставляют на 20 мин при 0°С, после чего к ней добавляют 0,5 мл 4 н. раствора соляной кислоты и 0,5 мл 10% раствора хлорида железа(III) в 0,1 н. соляной кислоте и доводят объем раствора дистиллированной водой до 20 мл. Оптическую плотность окрашенных растворов измеряют при 485 и 487 нм на фотоколориметре КФК-3 в кювете с толщиной рабочего слоя 10 мм. Раствор сравнения - те же компоненты без антибиотика.
Однако способ характеризуется длительностью процесса, многостадийностью, требует охлаждения раствора. Кроме того, данный способ предназначен только для определения ампициллина тригидрата и ампициллина натриевой соли, амоксициллина тригидрата и амоксициллина натриевой соли и не может быть распространен на другие группы антибиотиков и биологические среды.
Задачей изобретения является создание экспрессного и чувствительного способа обнаружения азотсодержащих противомикробных препаратов и антибиотиков, например изиниозида, этамбутола и цефатоксима в водных и биологических средах (в том числе в жидкости ротовой полости, сыворотке крови и др.), а также их присутствия в продуктах питания, сточных водах фармацевтических предприятий и других объектах.
Техническим результатом является сокращение времени обнаружения при снижении предела обнаружения антибиотиков и оптимизации метрологических характеристик способа (снижение предела обнаружения, увеличение точности определения, снижение погрешности определения результата).
Кроме того, одним из преимуществ заявляемого способа является возможность использования в полевых условиях, отсутствие необходимости в термической пробоподготовке и использования прибора для осуществления спектрометрического окончания при получении результатов.
Технический результат достигается способом обнаружения биоцидного азотсодержащего органического соединения в водном растворе, по которому воздействуют анализируемой пробой водного раствора на сорбент силикагель, модифицированный обработкой водным раствором соли переходного металла при температуре 50-70°С и величине рН от 3 до 5 в течение 1-1,5 часов и высушенный, и по появлению окрашенной зоны на сорбенте судят о наличии в растворе биоцидного азотсодержащего органического соединения.
В одном варианте осуществления изобретения используют сорбент, модифицированный солью переходного металла, размещенный в индикаторной трубке, а воздействие на сорбент осуществляют путем пропускания анализируемой пробы через индикаторную трубку.
В другом варианте используют гидрофильный материал, содержащий сорбент, модифицированный солью переходного металла, а воздействие на сорбент осуществляют путем нанесения капли анализируемой пробы на указанный материал.
Предпочтительно в качестве соли переходного металла использовать соль меди.
Для повышения чувствительности анализируемую пробу получают путем пропускания анализируемого водного раствора через концентрирующий патрон для твердофазной экстракции и десорбируют водно-спиртовым раствором.
Предложенный способ основан на свойстве образования азотсодержащих органических соединений образовывать окрашенные соединения с солями переходных металлов в водных растворах, но оно осуществляется в растворах в течение некоторого времени (10-15 мин) и при нагревании в течение не менее 5 мин при температуре свыше 60°С или требует добавления реактивов для осуществления предварительных реакций. Факт образования окрашенного соединения на твердом носителе - силикагеле (для алюмогелей, цеолитов и полимерных сорбентов изменение окраски не наблюдалось) практически моментально и при комнатной температуре установлен впервые.
Образование окраски на обработанном солями переходных металлов силикагеле для азотсодержащих органических соединений наблюдалось для различных металлов (медь, железо, кобальт, ртуть, свинец, никель и т.д.), но наиболее интенсивная окраска при более низкой концентрации в растворе определяемого вещества характерна для меди, при этом анионы в составе модифицирующего раствора не влияют на появление окраски, а определяют рН раствора, при котором данное соединение существует в растворенном состоянии при комнатной температуре, поэтому анализ осуществляют при определенном значении рН, сопровождающимся образованием окрашенной зоны сорбции анализируемого соединения.
При использовании индикаторной трубки, заполненной сорбентом, модифицированным солью переходного металла, фиксируют факт образования окрашенной зоны сорбента, образование которой соответствует концентрации антибиотика, предварительно определенной в модельном растворе.
При использовании структурированного гидрофильного материала, модифицированного солью переходного металла, определяют предельную концентрацию анализируемого соединения путем образования окрашенного пятна. При осуществлении способа путем нанесения капли раствора на структурированный материал, содержащий сорбент, модифицированный солями тяжелых металлов, фиксируют факт образования окрашенного пятна, соответствующего концентрации антибиотика, предварительно определенного в модельном растворе.
Предложенный способ осуществляют следующим образом.
Фракцию сорбента силикагеля с размером частиц 0.05-0.1 мм обрабатывают при температуре 50-70°С в течение 1-1,5 часов солями меди при величине рН от 3 до 5, помещают в стеклянную трубку или наносят на структурированный материал и высушивают при температуре 100-110°С в течение 60-90 мин, готовят водные растворы противомикробных препаратов и антибиотиков в дистиллированной воде с концентрацией 1,2 г/л, затем последовательным разбавлением готовят растворы меньших концентраций (0,12; 0,9; 0,7; 0,05; 0,01), пропускают через индикаторные трубки в объеме от 2 мл или наносят на индикаторный материал, фиксируя образование окрашенной зоны. Определяют концентрацию раствора, при которой происходит образование окрашенной зоны.
Объем исследуемого раствора пропускают через индикаторную трубку или наносят каплю на индикаторный материал. При появлении окрашенной зоны в индикаторной трубке или окрашенного пятна на структурированном материале делают вывод о наличии в водном растворе определяемого вещества.
Для анализа сточных вод, концентрация определяемых компонентов которых может быть менее 0,01 г/л, применяется предварительное концентрирование пробы воды на концентрирующих патронах (например: патроны для твердофазной экстракции - Oasis HLB). Для этого 500 мл анализируемой пробы пропускают через концентрирующий патрон для твердофазной экстракции - Oasis HLB, затем десорбируют 5 мл водно-спиртового раствора. Полученный раствор используют в качестве анализируемой пробы.
Пример 1
Определение изиниазида в лекарственных формах, в биологических жидкостях организма человека и животных, продуктов питания
Пропускают от 0.1 до 5 мл водного раствора анализируемого вещества (инъекционные растворы, водные вытяжки из сиропов, микстур, таблеток, биологических жидкостей человека и животных, продуктов питания) через стеклянную трубку, содержащую модифицированный индикаторный сорбент, и фиксируют появление окрашенной зоны.
Пример 2
Определение изиниазида в сточных водах
Проводят концентрирование пробы воды на концентрирующих патронах. Пропускают от 0.1 до 5 мл десорбата анализируемого вещества через стеклянную трубку, содержащую модифицированный индикаторный сорбент, и фиксируют появление окрашенной зоны.
Пример 3
Определение цефатоксима в лекарственных формах, в биологических жидкостях организма человека и животных, продуктах питания
Пропускают от 0.1 до 5 мл водного раствора анализируемого вещества (инъекционные растворы, водные вытяжки из сиропов, микстур, таблеток, биологических жидкостей человека и животных, продуктов питания) через стеклянную трубку, содержащую модифицированный индикаторный сорбент, и фиксируют появление окрашенной зоны.
Пример 4
Определение цефатоксима натрия в сточных водах
Для определения цефотаксима натрия в водной среде с концентрацией 0,0005 г/л объем водного раствора цефотаксима натрия 500 мл пропускают через концентрирующий патрон для твердофазной экстракции - Oasis HLB, затем десорбируют 5 мл водно-спиртового раствора. Пропускают от 0.1 до 5 мл десорбата анализируемого вещества через стеклянную индикаторную трубку, содержащую модифицированный индикаторный сорбент, и фиксируют появление окрашенной зоны.
Индикаторная трубка содержала два слоя сорбента (нижний 2,5 см - силикагель КСКГ, модифицированный 5% водным ацетатом меди при 70°С в течение 1 часа, высушенный при 110°С в течение 1,5 часов, отобрана фракция сорбента 0,1-0,15 мм; верхний 0,5 см - Цеолит NaA (размер пор 4°А) фракция сорбента 0,1-0,15 мм, предварительно просушен при 150°С в течение 2,5 часов).
Пример 5
Определение азотсодержащих противомикробных препаратов и антибиотиков в водных средах
На индикаторный гидрофильный материал наносят одну каплю водного раствора анализируемого вещества или водной вытяжки, образование окрашенного пятна свидетельствует о присутствии вещества в концентрации более 0,1 мг/мл.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ БИОЦИДНОГО АЗОТСОДЕРЖАЩЕГО ОРГАНИЧЕСКОГО СОЕДИНЕНИЯ В ВОДНОМ РАСТВОРЕ ЭТОГО СОЕДИНЕНИЯ | 2013 |
|
RU2567335C2 |
Способ количественного определения биоцидного азотсодержащего органического соединения гидразида изоникотиновой кислоты (изониазида) в водном растворе этого соединения | 2016 |
|
RU2633080C2 |
Индикатор на носителе для определения содержания серосодержащих соединений в автомобильном топливе, способ определения содержания серосодержащих соединений в автомобильном топливе и способ получения индикатора на носителе | 2017 |
|
RU2649978C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ МОНОМЕТИЛАНИЛИНА В УГЛЕВОДОРОДНЫХ ТОПЛИВАХ ИНДИКАТОРНЫМ ТЕСТОВЫМ СРЕДСТВОМ И ИНДИКАТОРНОЕ ТЕСТОВОЕ СРЕДСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2013 |
|
RU2548724C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ СЕРО- И АЗОТСОДЕРЖАЩИХ ВЕЩЕСТВ В ЖИДКИХ УГЛЕВОДОРОДНЫХ ТОПЛИВАХ | 2018 |
|
RU2682570C1 |
СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ ЦЕФАЛОСПОРИНОВЫХ АНТИБИОТИКОВ В БИОСРЕДАХ | 2010 |
|
RU2445624C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ СВИНЦА В БЕНЗИНЕ, ИНДИКАТОРНЫЙ СОСТАВ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ ИНДИКАТОРА НА НОСИТЕЛЕ ДЛЯ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ СВИНЦА В БЕНЗИНЕ | 2003 |
|
RU2249814C1 |
Способ определения воды в пластических смазках | 1986 |
|
SU1402938A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ЖЕЛЕЗА В АВТОМОБИЛЬНОМ БЕНЗИНЕ, ИНДИКАТОР НА НОСИТЕЛЕ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ ИНДИКАТОРА НА НОСИТЕЛЕ ДЛЯ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ЖЕЛЕЗА В БЕНЗИНЕ | 2007 |
|
RU2339942C1 |
Экспресс-способ определения цефтриаксона в плазме крови и смешанной слюне больных COVID-19 | 2021 |
|
RU2771851C1 |
Изобретение относится к аналитической химии и может быть использовано для определения наличия азотсодержащих противомикробных препаратов (изиниазида, этамбутола и др.) и антибиотиков (цефалоспоринового ряда - цефазолина, цефатоксима, цефуроксима, цефалексина и др.) в исследуемых жидких средах. Способ включает воздействие анализируемой пробой водного раствора на сорбент силикагель, модифицированный обработкой водным раствором соли переходного металла при температуре 50-70°С и величине рН от 3 до 5 в течение 1-1,5 часов и высушенный. По появлению окрашенной зоны на сорбенте судят о наличии в растворе биоцидного азотсодержащего органического соединения. В одном варианте осуществления изобретения используют сорбент, модифицированный солью переходного металла, размещенный в индикаторной трубке, а воздействие на сорбент осуществляют путем пропускания анализируемой пробы через индикаторную трубку. В другом варианте используют гидрофильный материал, содержащий сорбент, модифицированный солью переходного металла, а воздействие на сорбент осуществляют путем нанесения капли анализируемой пробы на указанный материал. Предпочтительно в качестве соли переходного металла использовать соль меди. Для повышения чувствительности анализируемую пробу получают путем пропускания анализируемого водного раствора через концентрирующий патрон для твердофазной экстракции и десорбируют водно-спиртовым раствором. 4 з.п. ф-лы, 5 пр.
1. Способ обнаружения биоцидного азотсодержащего органического соединения в водном растворе, по которому воздействуют анализируемой пробой водного раствора на сорбент силикагель, модифицированный обработкой водным раствором соли переходного металла при температуре 50-70°С и величине рН от 3 до 5 в течение 1-1,5 часов и высушенный, и по появлению окрашенной зоны на сорбенте судят о наличии в растворе биоцидного азотсодержащего органического соединения.
2. Способ по п. 1, отличающийся тем, что используют сорбент, модифицированный солью переходного металла, размещенный в индикаторной трубке, а воздействие на сорбент осуществляют путем пропускания анализируемой пробы через индикаторную трубку.
3. Способ по п. 1, отличающийся тем, что используют гидрофильный материал, содержащий сорбент, модифицированный солью переходного металла, а воздействие на сорбент осуществляют путем нанесения капли анализируемой пробы на указанный материал.
4. Способ по п. 1, отличающийся тем, что в качестве соли тяжелого металла используют соль меди.
5. Способ по п. 1, отличающийся тем, что анализируемую пробу получают путем пропускания анализируемого водного раствора через концентрирующий патрон для твердофазной экстракции и десорбируют водно-спиртовым раствором.
КРОАСНИКОВА Спектрофотометрическое определение пенициллиновых антибиотиков // Хим.Фарм.Журн., 2003, Т.37, N9, C.49-51 | |||
RU 2010115488 A, 27.10.2011 | |||
БЕКЛЕМИШЕВ М.К | |||
и др., Сорбционно-каталитический метод определения азотсодержащих органических соединений//Вестн.Моск.Ун-та.Сер.2 Химия, 2003, Т44, N2, C.115-122 | |||
СПОСОБ ИНВЕРСИОННО-ВОЛЬТАМПЕРОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ БЕНЗИЛПЕНИЦИЛЛИНА | 2010 |
|
RU2425365C1 |
MORELLI B., Derivative spectophotometry in the analysis of mixtures of cefotaxime sodium and cefadroxil monohydrate // J.Pharm and Biomed.Anal, 2003, V.32, N2, P.257-267. |
Авторы
Даты
2017-02-20—Публикация
2015-06-19—Подача