МАЛОГАБАРИТНАЯ НАВИГАЦИОННАЯ СИСТЕМА РАДИОЗОНДИРОВАНИЯ АТМОСФЕРЫ Российский патент 2017 года по МПК G01S19/14 

Описание патента на изобретение RU2613342C1

Изобретение относится к радиотехнике и может быть использовано при разработке малогабаритных носимых комплексов радиозондирования атмосферы (CP), построенных на основе использования сигналов спутниковых навигационных радиоэлектронных систем (СНРС) ГЛОНАСС/GPS/ для определения текущих координат аэрологического радиозонда (АРЗ), направления и скорости ветра, а также передачи координатной и телеметрической информации на наземную базовую станцию (БС) сопровождения радиозонда для обеспечения десантных операций МЧС, для нужд изыскательских партий, воздушно десантных войск, морской пехоты и т.д.

Общей проблемой производства и эксплуатации CP атмосферы является создание малогабаритных, высокоточных систем определения координат АРЗ, недорогих конструкций аэрологических радиозондов, обеспечивающих измерение метеорологических параметров атмосферы с необходимой точностью, надежную передачу информации с борта АРЗ на наземную станцию в оперативном радиусе действия СР.

Известен метод и аппаратура для слежения за местоположением и скоростью приборов, находящихся в воздухе (патент США №5347285).

Определяется метод и система слежения, по крайней мере, за одним движущимся объектом, таким как находящийся в воздухе метеорологический прибор, с расположенной на земле станцией слежения путем перехвата широкополосных сигналов, передаваемых созвездием спутников, в которых кодовая последовательность неизвестна. Метод и система включают в себя схему приемника на движущемся объекте, которая сжимает широкополосные сигналы в узкополосный сигнал, удаляет все частотные сдвиги с помощью эталонного генератора со смещенной частотой, формирует узкополосный аналоговый модулирующий сигнал и передает его на базовую станцию, в которой выполняется перевод сигнала в спектральную область и полученные спектральные составляющие сравниваются с синтезированными спектральными величинами, чтобы идентифицировать каждый спутник, оценивается смещение частоты эталонного генератора, а также определяются координаты и скорость движущегося объекта.

Недостатки известного решения: сложный и недостаточно точный способ вычисления координат радиозонда.

Известен удаленный GPS-датчик и обрабатывающая система для удаленного GPS-зондирования и централизованная обработка на наземной станции для удаленного мобильного определения местоположения и скорости (патент США №5420592).

Пример осуществления данного изобретения - система радиозондирования, включающая в себя цифровой буфер сигналов GPS и последовательный коммуникационный контроллер для передачи кадров сообщений, формируемых комбинацией цифровых данных из буфера снимка сигналов GPS и оцифрованных метеорологических данных, полученных устройством измерения влажности, температуры и давления. Кадры сообщения передаются со сравнительно низкой скоростью по метеорологическому радиоканалу на наземную станцию. Вся традиционная цифровая обработка GPS-сигналов главным образом выполняется на наземной станции, включая восстановление несущей частоты, захват псевдослучайно-шумового кода, выделение псевдодальностей, выделение эфемеридной информации, сбор альманаха, выбор спутников, вычисление навигационного решения и дифференциальные поправки. Кроме того, наземная обработка включает в себя фильтрацию Калмана вычисления скорости ветра.

Недостатки известного решения: большая загруженность радиоканала телеметрии, поэтому более широкий спектр передаваемого сигнала (потери в дальности или увеличение мощности передатчика радиозонда); прерывистость обработки сигналов GPS, что усложняет функционирование следящих контуров и фильтров.

Известна система GPS-слежения (патент США №5379224). Недорогая система слежения, использующая спутники Глобальной системы позиционирования (GPS), пригодна для применения в прикладных задачах, в которых задействованы радиозонды, радиогидроакустические буйки и другие подвижные объекты. Система слежения включает в себя датчик, установленный на каждом объекте, который оцифровывает сигналы GPS-спутников и записывает их в буфер данных. Затем эти цифровые выборки передаются с меньшей скоростью, чем эти сигналы GPS-спутников были оцифрованы, по телеметрическому каналу связи, чередуясь с другими телеметрическими данными объекта. Эти данные GPS обрабатываются вычислительной рабочей станцией, которая вычисляет координаты и скорость датчика на момент выборки (оцифровки) сигнала. Буфер данных датчика периодически обновляется, а на рабочей станции периодически пересчитываются координаты и скорость датчика. Кроме этого рабочая станция вычисляет дифференциальные поправки, чтобы помочь обнаружить сигналы и повысить точность определения координат.

Недостатки известного решения: большая загруженность радиоканала телеметрии, поэтому более широкий спектр передаваемого сигнала (потери в дальности или увеличение мощности передатчика); прерывистость обработки сигналов GPS, что усложняет функционирование следящих контуров и фильтров.

Известна система радиозондирования атмосферы (патент РФ на полезную модель №106758 «Система радиозондирования атмосферы на основе сигналов GPS/ГЛОНАСС». Система содержит передатчики навигационных сигналов системы GPS, передатчики навигационных сигналов системы ГЛОНАСС, аэрологический радиозонд (АРЗ), снабженный приемником навигационных сигналов систем GPS и ГЛОНАСС, первую, вторую и третью антенные системы, наземную базовую станцию с блоком отображения координатно-телеметрической информации. Первая антенная система метеорологической системы обеспечивает дифференциальный режим работы. Вторая антенная система имеет круговую диаграмму направленности в азимутальной плоскости, широкую диаграмму направленности в угломестной плоскости и обеспечивает прием сигналов АРЗ на частоте 403 мГц в ближней зоне. Третья антенная система имеет круговую диаграмму направленности в азимутальной плоскости, узкую диаграмму направленности в угломестной плоскости и обеспечивает прием сигналов АРЗ на частоте 403 мГц в дальней зоне.

Недостатком известной системы является низкая пространственная селекция сигнала радиозонда, недостаточная ЭМС, низкая помехозащищенность от преднамеренных помех по каналам приема навигационных сигналов и сигналов радиозонда.

Известна система радиозондирования атмосферы (патент РФ на полезную модель №109297 «Система радиозондирования атмосферы GPS/ГЛОНАСС». Система радиозондирования атмосферы работает на основе сигналов спутниковых навигационных систем ГЛОНАСС, GPS, GALILEO. Наземная базовая станция системы радиозондирования принимает сигналы навигационного радиозонда в диапазоне 403 мГц в ближней зоне на антенну с круговой диаграммой направленности. В дальней зоне прием осуществляется на антенну, обладающую направленными свойствами.

Авторы заявляют, что в настоящее время о существовании малогабаритных носимых подобных комплексов в армиях мира неизвестно.

Общеизвестно получение метеорологической информации о вертикальных профилях атмосферы с помощью аэрологических радиозондов, использующих сигналы глобальных навигационных спутниковых систем (ГНСС) ГЛОНАСС/GPS для определения координат радиозондов, в том числе направления и скорости ветра.

Недостатками известных технических средств радиозондирования являются большие массогабаритные характеристики наземной аппаратуры.

Технической задачей изобретения является существенное снижение массогабаритных характеристик аппаратуры радиозондирования при сохранении точности получения вертикального профиля метеорологической информации (температура, давление, влажность, скорость и направление ветра).

Технический результат достигается за счет применения мобильной, малогабаритной навигационной системы получения метеорологической информации.

Для решения поставленной задачи предлагается:

Малогабаритная навигационная система радиозондирования атмосферы, содержащая навигационный аэрологический радиозонд - АРЗ и созвездия спутников радионавигационных систем GPS/ГЛОНАСС, ГАЛЛИЛЕО и других, отличающаяся тем, что система выполнена в радионавигационном режиме, для чего наземная часть системы содержит: первую и вторую приемные антенны, первый и второй радиоприемник, блок обработки координатно-телеметрической информации - КТИ-АРЗ, пульт управления и отображения этой телеинформации - П-КТИ, интерфейс ввода/вывода информации, блок выдачи полетного задания АРЗ и привод автоматического слежения со следующими соединениями: радиосигналы созвездий всех спутниковых радионавигационных систем по радиоканалам через первую антенну и ее приемник соединены с первым входом блока КТИ-АРЗ, выход АРЗ через свой радиоканал через вторую антенну и второй радиоприемник соединен с вторым входом КТИ-АРЗ, выход которого двунаправленной шиной связи Ш1 соединен с пультом управления и отображения КТИ, который в свою очередь второй двунаправленной шиной связи Ш2 соединен с интерфейсом ввода/вывода информации; блок обработки КТИ-АРЗ через блок выдачи полетного задания третьей двунаправленной шиной Ш3 соединен с АРЗ, а пульт управления и отображения КТИ шинами управления соединен с входами привода автоматического слежения, с которым отдельным входом связан ручной привод слежения, выходы привода слежения напрямую связаны с второй антенной по углу азимута и углу места.

На чертеже представлена структурно-электрическая схема системы, на которой изображено:

1. Созвездие спутниковой навигационной радиосистемы GPS/ГЛОНАСС

2. Созвездие других спутниковых навигационных радиосистем (ГАЛЛИЛЕО и др.)

3. Навигационный аэрологический радиозонд

4. Первая антенна: приема радионавигационных сигналов

5. Первый приемник: радионавигационных сигналов

6. Вторая антенна: приема телеметрических сигналов АРЗ

7. Второй радиоприемник: радиоприемное устройство телеметрических сигналов АРЗ

8. Блок обработки координатно-телеметрических сигналов АРЗ (КТИ-АРЗ)

9. Блок выдачи полетного задания

10. Пульт управления и отображения КТИ-АРЗ

11. Привод автоматического слежения АРЗ

12. Интерфейс ввода/вывода информации

13. Наземная часть системы

РК1 - первый радиоканал связи ГНСС 1 с антенной 4 и с АРЗ 3

PK-N радиоканал PK-N связи других созвездий ГНСС-N с антенной 4 и с АРЗ 3

РК-АРЗ-БС - радиоканал связи АРЗ 3 с антенной 6.

Система имеет следующие соединения.

Малогабаритная навигационная система радиозондирования атмосферы, содержащая навигационный аэрологический радиозонд - АРЗ- и созвездия спутников радионавигационных систем GPS/ГЛОНАСС, ГАЛЛИЛЕО и других, отличающаяся тем, что система выполнена в радионавигационном режиме, для чего наземная часть системы содержит: первую и вторую приемные антенны, первый и второй радиоприемник, блок обработки координатной телеинформации - КТИ-АРЗ, пульт управления и отображения этой телеинформации - П-КТИ, интерфейс ввода/вывода информации, блок выдачи полетного задания АРЗ и привод автоматического слежения со следующими соединениями: радиосигналы созвездий всех спутниковых радионавигационных систем по радиоканалам через первую антенну и ее приемник соединены с первым входом блока КТИ-АРЗ, выход АРЗ через свой радиоканал через вторую антенну и второй радиоприемник соединен с вторым входом КТИ-АРЗ, выход которого двунаправленной шиной связи Ш1 соединен с пультом управления и отображения КТИ, который в свою очередь второй двунаправленной шиной связи Ш2 соединен с интерфейсом ввода/вывода информации; блок обработки КТИ-АРЗ через блок выдачи полетного задания третьей двунаправленной шиной Ш3 соединен с АРЗ, а пульт управления и отображения КТИ шинами управления соединен с входами привода автоматического слежения, с которым отдельным входом связан ручной привод слежения, выходы привода слежения напрямую связаны с второй антенной по углу азимута и углу места.

Система работает следующим образом.

После высадки головной части десанта (без тяжелой техники) определяются географические координаты места высадки по сигналам СНРС1 и CHPCN через антенну 4 и запускается АРЗ 3 при включенной наземной части системы. АРЗ 3 начинает свой полет и непрерывно с заданными условиями полетного задания передает метеорологические параметры атмосферы через вторую антенну и блок обработки КТИ-АРЗ 8 в пульт управления и отображения КТИ 10. Оператор системы визуально по экрану пульта 10 отслеживает эту информацию от земли до высоты десантирования и по самолетному радиоканалу эта информация автоматически передается оператору выброса тяжелой техники, который вручную или в автоматическом режиме рассчитывает момент сброса тяжелой техники с учетом естественно скорости и высоты полета самолета и метеоусловий среды атмосферы, замеренной АРЗ 3. Полет АРЗ отслеживается через вторую антенну, которая автоматически поворачивается по углу азимута и места привода 11 по сигналам, передаваемым с пульта 10, также можно отслеживать полет АРЗ 3 в ручном режиме по max принимаемого сигнала. Полетное задание через блок 9 на АРЗ 3 (рабочая частота, скорость передачи информации и пр.) задаются перед полетом.

Конструктивно наземная часть системы представляет собой электронный модуль, состоящий из первой и второй антенн, первого и второго приемников 5 и 7 привода слежения 11; блок выдачи полетного задания 9, блок обработки КТИ АРЗ 8, пульт управления и отображения 10 и интерфейс ввода/вывода информации выполнены на ноутбуке.

Таким образом, наземная (носимая) часть системы очень малогабаритна и весит не более 1,5-2 кг (включая аккумулятор питания, который на чертеже условно не показан).

В систему входит АРЗ и шар с гелием (заполняется перед стартом от миниатюрного баллона), общий вес которых не более также 1,5-2 кг. Метеоданные, полученные с АРЗ, передаются на борт самолета-носителя тяжелой техники со штатной радиостанции командира десанта.

Похожие патенты RU2613342C1

название год авторы номер документа
НАВИГАЦИОННО-РАДИОЛОКАЦИОННАЯ СИСТЕМА РАДИОЗОНДИРОВАНИЯ АТМОСФЕРЫ 2022
  • Иванов Вячеслав Элизбарович
  • Плохих Олег Васильевич
  • Малыгин Иван Владимирович
RU2805163C1
УНИФИЦИРОВАННАЯ СИСТЕМА РАДИОЗОНДИРОВАНИЯ АТМОСФЕРЫ 2014
  • Иванов Вячеслав Элизбарович
  • Гусев Андрей Викторович
  • Плохих Олег Васильевич
  • Кудинов Сергей Иванович
RU2576023C1
МЕТЕОРОЛОГИЧЕСКАЯ СИСТЕМА 2011
  • Иванов Вячеслав Элизбарович
  • Гусев Андрей Викторович
  • Плохих Олег Васильевич
RU2480791C2
РАДИОЛОКАЦИОННО-НАВИГАЦИОННАЯ СИСТЕМА РАДИОЗОНДИРОВАНИЯ АТМОСФЕРЫ 2022
  • Иванов Вячеслав Элизбарович
RU2793597C1
Многофункциональная система радиозондирования атмосферы 2016
  • Иванов Вячеслав Элизбарович
  • Плохих Олег Васильевич
  • Кудинов Сергей Иванович
  • Гусев Андрей Викторович
RU2626410C1
МНОГОРЕЖИМНЫЙ АЭРОЛОГИЧЕСКИЙ КОМПЛЕКС 2019
  • Иванов Вячеслав Элизбарович
RU2710965C1
НАВИГАЦИОННАЯ СИСТЕМА ЗОНДИРОВАНИЯ АТМОСФЕРЫ 2015
  • Плохих Олег Васильевич
  • Ширшов Николай Васильевич
  • Иванов Вячеслав Элизбарович
  • Букрин Илья Владимирович
  • Гусев Андрей Викторович
  • Кудинов Сергей Иванович
RU2613153C1
НАВИГАЦИОННЫЙ АЭРОЛОГИЧЕСКИЙ РАДИОЗОНД С ПЕРЕДАТЧИКОМ НА ПАВ-РЕЗОНАТОРЕ 2022
  • Иванов Вячеслав Элизбарович
  • Плохих Олег Васильевич
  • Малыгин Иван Владимирович
  • Лучинин Александр Сергеевич
RU2785585C1
СИСТЕМА РАДИОЗОНДИРОВАНИЯ АТМОСФЕРЫ С ПАКЕТНОЙ ПЕРЕДАЧЕЙ МЕТЕОРОЛОГИЧЕСКОЙ ИНФОРМАЦИИ 2013
  • Иванов Вячеслав Элизбарович
  • Гусев Андрей Викторович
  • Плохих Олег Васильевич
RU2529177C1
РАДИОЛОКАЦИОННАЯ СИСТЕМА ЗОНДИРОВАНИЯ АТМОСФЕРЫ 2014
  • Иванов Вячеслав Элизбарович
  • Гусев Андрей Викторович
  • Плохих Олег Васильевич
  • Кудинов Сергей Иванович
RU2571870C1

Иллюстрации к изобретению RU 2 613 342 C1

Реферат патента 2017 года МАЛОГАБАРИТНАЯ НАВИГАЦИОННАЯ СИСТЕМА РАДИОЗОНДИРОВАНИЯ АТМОСФЕРЫ

Изобретение относится к радиотехнике и может быть использовано при разработке малогабаритных носимых комплексов радиозондирования атмосферы. Технической результат состоит в снижении массогабаритных характеристик аппаратуры радиозондирования при сохранении точности получения вертикального профиля метеорологической информации. Для этого малогабаритная навигационная система радиозондирования атмосферы содержит навигационный аэрологический радиозонд - АРЗ- и созвездия спутников радионавигационных систем GPS/ГЛОНАСС, ГАЛЛИЛЕО, при этом система выполнена в радионавигационном режиме, для чего наземная часть системы содержит: первую и вторую приемные антенны, первый и второй радиоприемник, блок обработки координатной телеинформации - КТИ-АРЗ-, пульт управления и отображения этой телеинформации - П-КТИ, интерфейс ввода/вывода информации, блок выдачи полетного задания АРЗ и привод автоматического слежения со следующими соединениями: радиосигналы созвездий всех спутниковых радионавигационных систем. 1 ил.

Формула изобретения RU 2 613 342 C1

Малогабаритная навигационная система радиозондирования атмосферы, содержащая навигационный аэрологический радиозонд - АРЗ и созвездия спутников радионавигационных систем GPS/ГЛОНАСС, ГАЛЛИЛЕО и других, отличающаяся тем, что система выполнена в радионавигационном режиме, для чего наземная часть системы содержит: первую и вторую приемные антенны, первый и второй радиоприемник, блок обработки координатной телеинформации - КТИ-АРЗ, пульт управления и отображения этой телеинформации - П-КТИ, интерфейс ввода/вывода информации, блок выдачи полетного задания АРЗ и привод автоматического слежения со следующими соединениями: радиосигналы созвездий всех спутниковых радионавигационных систем по радиоканалам через первую антенну и ее приемник соединены с первым входом блока КТИ-АРЗ, выход АРЗ через свой радиоканал через вторую антенну и второй радиоприемник соединен с вторым входом КТИ-АРЗ, выход которого двунаправленной шиной связи Ш1 соединен с пультом управления и отображения КТИ, который в свою очередь второй двунаправленной шиной связи Ш2 соединен с интерфейсом ввода/вывода информации; блок обработки КТИ-АРЗ через блок выдачи полетного задания третьей двунаправленной шиной ШЗ соединен с АРЗ, а пульт управления и отображения КТИ шинами управления соединен с входами привода автоматического слежения, с которым отдельным входом связан ручной привод слежения, выходы привода слежения напрямую связаны с второй антенной по углу азимута и углу места.

Документы, цитированные в отчете о поиске Патент 2017 года RU2613342C1

Электроконтактный щуп к копировальным станкам с электрическим управлением 1948
  • Телишевский Б.Е.
SU79362A1
СИСТЕМА НАВИГАЦИИ АВТОНОМНОГО НЕОБИТАЕМОГО ПОДВОДНОГО АППАРАТА 2011
  • Зеньков Андрей Федорович
  • Катенин Владимир Александрович
  • Румянцев Юрий Владимирович
  • Федоров Александр Анатольевич
  • Чернявец Владимир Васильевич
  • Аносов Виктор Сергеевич
  • Жильцов Николай Николаевич
RU2460043C1
Способ приготовления лака 1924
  • Петров Г.С.
SU2011A1
Способ получения листового стекла 1985
  • Завгороднев Виталий Андреевич
  • Саркисов Павел Джебраелович
  • Горина Инесса Николаевна
  • Балоболкин Анатолий Николаевич
  • Иванов Сергей Павлович
  • Абионян Станислав Восканович
SU1275012A1

RU 2 613 342 C1

Авторы

Иванов Вячеслав Элизбарович

Плохих Олег Васильевич

Кудинов Сергей Иванович

Черных Олег Аветисович

Даты

2017-03-16Публикация

2016-02-02Подача