СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНОГО ПОРОШКА ДИОКСИДА ТИТАНА СО СТРУКТУРОЙ РУТИЛА Российский патент 2017 года по МПК C01G23/53 B82B3/00 B82Y30/00 

Описание патента на изобретение RU2618879C1

Изобретение относится к неорганической химии, а именно к получению соединений титана, которые могут быть использованы при изготовлении керамических материалов, сегнетоэлектриков, в качестве наполнителя в лакокрасочных и полимерных материалах.

Известен способ получения диоксида титана рутильной модификации [RU 2281913 С2, МПК C01G 23/053, опубл. 20.08.2006], который включает термогидролиз раствора тетрахлорида титана с получением суспензии TiO2 с концентрацией 60-70 г/дм3, содержащей титановые зародыши и полиакриламид в количестве 100-120 г на 1 кг ТiO2 в исходном растворе, в течение 1,5-2 ч. Полученный гидроксид титана отделяют от фильтрата, обрабатывают 2-3%-ным раствором щавелевой кислоты, промывают дистиллированной водой и подвергают сушке и прокаливанию при температуре 550-650°С.

Недостатком известного способа является недостаточная чистота полученного диоксида титана из-за использования органических соединений, высокие энергозатраты на проведение температурной обработки, а также невозможность получения нанодисперсного диоксида титана.

Известен способ получения диоксида титана [RU 2472707 C1, МПК C01G 23/053, В82В 1/00, B82Y 99/00, опубл. 20.01.2013], который включает гидролиз раствора тетрахлорида титана и нейтрализацию соляной кислоты водной суспензией гидроксида кальция при перемешивании, отделение осадка от раствора, промывку, сушку и прокаливание осадка. Размер частиц гидроксида кальция в суспензии, подаваемой в реактор на гидролиз, составляет не более 3 мкм, а концентрацию тетрахлорида титана поддерживают не более 2%. После гидролиза из суспензии выделяют в качестве целевого продукта мелкую фракцию, а крупную фракцию возвращают в реактор. Промывку целевого продукта проводят после стадии прокаливания гидроксида титана чистой соляной кислотой при рН 1-2, а затем повторно сушат продукт.

Недостатком такого способа является использование соляной кислоты, многостадийность, что технически усложняет процесс.

Известен способ получения рутильного диоксида титана [RU 2171228 С2, МПК7 C01G 23/053, C01G 23/08, опубл. 27.07.2001], который включает гидролиз водного раствора сульфата титана в присутствии зародышей из диоксида титана для образования водного оксида титана и прокаливание водного оксида титана, который образуется в рутильной кристаллической форме после нагревания до 950°С со скоростью 1°С в минуту, нагрев проводят до тех пор, пока не получают диоксид титана, в котором по крайней мере 99,5 мас.% находятся в рутильной кристаллической структуре.

Недостатками этого способа являются высокие энергозатраты - нагрев проводят до 950°С и со скоростью 1°С в минуту в течение неопределенного времени до достижения 99,5 мас.% содержания рутильной фазы в образце.

Известен способ получения диоксида титана со структурой рутила [SU 1795958 A3, МПК5 C01G 23/053, опубл. 15.02.93], выбранный в качестве прототипа, включающий осаждение диоксида титана из раствора, содержащего хлорид титана (III), 25%-ным водным раствором аммиака, фильтрование, промывку, сушку, термообработку. Для увеличения удельной поверхности осаждение проводят из солянокислого раствора, полученного растворением металлического титана в избытке соляной кислоты в атмосфере водорода при рН 4-7, термообработку ведут при 250-400°С.

Недостатками такого способа является использование дорогостоящего металлического титана и проведение синтеза диоксида титана в атмосфере водорода, что повышает требования к технике безопасности ведения работ.

Задачей изобретения является получение нанодисперсного порошка диоксида титана со структурой рутила.

Предлагаемый способ получения нанодисперсного рутильного диоксида титана, также как в прототипе, включает осаждение его из раствора, содержащего хлорид титана, и одновременную нейтрализацию 25%-ным водным раствором аммиака, промывку, сушку, термообработку.

В отличие от прототипа, нейтрализацию осуществляют при мольном соотношении хлорида титана (IV) к гидроксиду аммония 1:(1,3-1,8), причем раствор хлорида титана (IV) приливают к водному раствору аммиака без перемешивания, суспензию выдерживают не менее 0,5 ч, проводят промывку осадка методом декантации до полного отмывания примесей и достижения удельного электрического сопротивления суспензии диоксида титана не менее 1⋅105 Ом⋅см. Отмытую суспензию сушат при комнатной температуре, а затем термообработку порошка оксида титана (IV) проводят при 100-200°С.

Таким образом, предлагаемый способ получения нанодисперсного диоксида титана со структурой рутила обеспечивает по сравнению с прототипом следующие преимущества: снижение температуры термообработки с 400-250 до 200-100°С, упрощение способа за счет уменьшения числа компонентов и числа операций в процессе синтеза.

На фиг. 1 представлены результаты рентгенофазового анализа образца, полученного при соотношении хлорида титана (IV) к гидроксиду аммония 1:1,5, времени выдержки суспензии 0,5 ч, высушенного при комнатной температуре.

На фиг. 2 представлены результаты рентгенофазового анализа образца, полученного при соотношении хлорида титана (IV) к гидроксиду аммония 1:1,5, времени выдержки суспензии 0,5 ч, после прогрева образца при 200°С.

В таблице 1 приведены результаты примеров реализации предложенного способа получения нанодисперсного порошка диоксида титана со структурой рутила.

К 1 л TiCl4 в химическом реакторе прибавляли 25%-ный водный раствор аммиака без перемешивания суспензии до достижения соотношения тетрахлорида титана к гидроксиду аммония 1:1,5. Суспензию выдерживали 0,5 ч и проводили промывку осадка гидратированного диоксида титана методом декантации до полного отмывания примесей и достижения удельного электрического сопротивления суспензии диоксида титана не менее 1⋅105 Ом⋅см, которое измеряли с помощью электроприбора К4570/1Ц с мегаомметрической приставкой МП4579. Отмытую суспензию высушивали при комнатной температуре. Площадь удельной поверхности полученных образцов, которую определяли с помощью автоматического газоадсорбционного анализатора TriStar II, составила 130 м2/г. Согласно рентгенофазовому анализу, проведенному с помощью дифрактометра Дифрей-401 (фиг. 1), образцы представлены аморфизированной фазой рутила. После прогрева этих образцов в муфельной печи до 200°С площадь удельной поверхности возросла до 165 м2/г, при этом во время прогрева прошла кристаллизация фазы рутила (фиг. 2). Среднеповерхностный диаметр частиц , соответствующий полученной площади удельной площади поверхности, который рассчитывали по формуле

где ρ - плотность вещества, г/см3;

S - площадь удельной поверхности, м2/г,

составил 7,9 нм.

Результаты рентгенофазового анализа и площади удельной поверхности образцов, полученных при различных соотношениях хлорида титана (IV) к гидроксиду аммония, температурах обработки и времени выдержки представлены в таблице 1.

Согласно полученным результатам, фаза рутила в полученном продукте образуется при мольном соотношении хлорида титана (IV) к гидроксиду аммония 1:(1,3-1,8). При мольном соотношении меньше, чем 1:1,3 в полученном продукте, присутствует фаза анатаза; при мольном соотношении больше, чем 1:1,8, происходит укрупнение частиц диоксида титана, полученный продукт не является нанодисперсным.

Время выдержки суспензии менее 0.5 ч приводит к стабилизации рентгеноаморфного диоксида титана, т.е. неокристаллизованного продукта, что ухудшает качество продукции.

Удельное электрическое сопротивление суспензии диоксида титана менее 1⋅105 Ом⋅см свидетельствует о наличии примесей и приводит к снижению диэлектрических свойств изделий из диоксида титана структуры рутила: рутил с минимальным содержанием примесей дороже на мировом рынке.

При температуре обработки менее 100°С в продукте остается даже слабосвязанная вода как вредная примесь при изготовлении керамических изделий, а также низкая температура способствует стабилизации рентгеноаморфных продуктов, ухудшающих качество продукции.

При температуре обработки более 200°С происходит снижение среднечислового диаметра частиц, что приводит к укрупнению частиц диоксида титана, т.е. он становится не нанодисперсным, хуже по параметрам.

Температура обработки 100-200°С является оптимальной для получения нанодисперсного порошка структуры рутила: порошок не содержит примесей воды и не содержит рентгеноаморфного продукта, в то же время остается нанодисперсным.

Похожие патенты RU2618879C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛИЧЕСКОГО ДИОКСИДА ТИТАНА В СТРУКТУРНОЙ МОДИФИКАЦИИ АНАТАЗ 2014
  • Сотникова Лариса Владимировна
  • Степанов Антон Юрьевич
  • Владимиров Александр Александрович
  • Дягилев Денис Владимирович
  • Титов Федор Вадимович
RU2575026C1
СПОСОБ ПОЛУЧЕНИЯ ФОТОКАТАЛИТИЧЕСКИ АКТИВНОГО ДИОКСИДА ТИТАНА 2011
  • Зенковец Галина Алексеевна
  • Воронцов Александр Валерьевич
  • Козлов Денис Владимирович
  • Иванова Галина Геннадьевна
  • Шутилов Алексей Александрович
  • Пармон Валентин Николаевич
RU2486134C1
Способ получения диоксида титана спецмарок и особой чистоты с регулируемой удельной поверхностью 2018
  • Лапшина Елена Николаевна
  • Мазеин Сергей Александрович
  • Бражникова Галина Германовна
RU2693177C1
Способ синтеза оксида титана 2018
  • Рычков Владимир Николаевич
  • Машковцев Максим Алексеевич
  • Берескина Полина Анатольевна
  • Буйначев Сергей Владимирович
  • Бакшеев Евгений Олегович
RU2709093C1
СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННОГО ДИОКСИДА ТИТАНА 2007
  • Пармон Валентин Николаевич
  • Михалин Николай Васильевич
  • Пай Зинаида Петровна
  • Жижина Елена Георгиевна
  • Донской Александр Александрович
  • Баритко Наталия Васильевна
  • Елисеев Олег Александрович
  • Савенкова Александра Васильевна
RU2348582C1
СПОСОБ ПОЛУЧЕНИЯ ТИТАНАТА ДВУХВАЛЕНТНОГО МЕТАЛЛА 2006
  • Иваненко Владимир Иванович
  • Локшин Эфроим Пинхусович
  • Якубович Екатерина Николаевна
  • Владимирова Светлана Васильевна
  • Калинников Владимир Трофимович
RU2323882C2
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРА-НАНОДИСПЕРСНОГО ПОРОШКА ОКСИДА ПЕРЕХОДНОГО МЕТАЛЛА ИЛИ СМЕСИ ОКСИДОВ ПЕРЕХОДНЫХ МЕТАЛЛОВ 2008
  • Швейкин Геннадий Петрович
  • Николаенко Ирина Владимировна
RU2400428C2
СПОСОБ ПЕРЕРАБОТКИ КВАРЦ-ЛЕЙКОКСЕНОВЫХ КОНЦЕНТРАТОВ 2008
  • Чистов Леонид Борисович
  • Охрименко Владимир Емельянович
  • Выговский Евгений Владимирович
RU2390572C1
СПОСОБ ПОЛУЧЕНИЯ ДИОКСИДА ТИТАНА 2011
  • Лановецкий Сергей Викторович
  • Пойлов Владимир Зотович
  • Онорин Станислав Александрович
  • Тихонов Вячеслав Александрович
RU2472707C1
СПОСОБ ПОЛУЧЕНИЯ ДИОКСИДА ТИТАНА 2004
  • Вахменина Ольга Николаевна
  • Бокман Григорий Юрьевич
  • Шерстобитова Любовь Семеновна
  • Данщина Наталья Семеновна
RU2281913C2

Иллюстрации к изобретению RU 2 618 879 C1

Реферат патента 2017 года СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНОГО ПОРОШКА ДИОКСИДА ТИТАНА СО СТРУКТУРОЙ РУТИЛА

Изобретение относится к неорганической химии и может быть использовано при изготовлении керамических материалов, сегнетоэлектриков, наполнителей лакокрасочных и полимерных материалов. Способ получения нанодисперсного рутильного диоксида титана включает осаждение его из раствора, содержащего хлорид титана, и одновременную нейтрализацию 25%-ным водным раствором аммиака. Нейтрализацию осуществляют при мольном соотношении хлорида титана (IV) к гидроксиду аммония 1:(1,3-1,8). Раствор хлорида титана (IV) приливают к водному раствору аммиака без перемешивания. Суспензию выдерживают не менее 0,5 ч. Осадок промывают методом декантации до полного отмывания примесей и достижения удельного электрического сопротивления суспензии диоксида титана не менее 1⋅105 Ом⋅см. Отмытую суспензию сушат при комнатной температуре. Затем проводят термообработку порошка при 100-200°С. Изобретение позволяет упростить получение нанодисперсного порошка диоксида титана со структурой рутила, снизить температуру термообработки. 2 ил., 1 табл.

Формула изобретения RU 2 618 879 C1

Способ получения нанодисперсного рутильного диоксида титана, включающий осаждение его из раствора, содержащего хлорид титана, и одновременную нейтрализацию 25%-ным водным раствором аммиака, промывку, сушку, термообработку, отличающийся тем, что нейтрализацию осуществляют при мольном соотношении хлорида титана (IV) к гидроксиду аммония 1:(1,3-1,8), причем раствор хлорида титана (IV) приливают к водному раствору аммиака без перемешивания, суспензию выдерживают не менее 0,5 ч, проводят промывку осадка методом декантации до полного отмывания примесей и достижения удельного электрического сопротивления суспензии диоксида титана не менее 1⋅105 Ом⋅см, отмытую суспензию сушат при комнатной температуре, а затем термообработку порошка оксида титана (IV) проводят при 100-200°C.

Документы, цитированные в отчете о поиске Патент 2017 года RU2618879C1

Способ получения диоксида титана со структурой рутила 1990
  • Калинкина Ольга Васильевна
  • Бальжинимаев Баир Сыдыпович
  • Богданов Сергей Владимирович
SU1795958A3
СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛИЧЕСКОГО ДИОКСИДА ТИТАНА В СТРУКТУРНОЙ МОДИФИКАЦИИ АНАТАЗ 2014
  • Сотникова Лариса Владимировна
  • Степанов Антон Юрьевич
  • Владимиров Александр Александрович
  • Дягилев Денис Владимирович
  • Титов Федор Вадимович
RU2575026C1
СПОСОБ ПОЛУЧЕНИЯ ПИГМЕНТНОГО ДИОКСИДА ТИТАНА ИЗ ТИТАНСОДЕРЖАЩИХ ОТХОДОВ 1996
  • Иванов В.А.
  • Долгова И.Ю.
  • Самойлов В.И.
  • Храпов А.А.
  • Сидоренко С.А.
  • Овчинникова Р.Ф.
RU2113407C1
РУТИЛЬНЫЙ ДИОКСИД ТИТАНА И СПОСОБЫ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ) 1996
  • Робб Джон
  • Ватсон Гэри Вильям
RU2171228C2
Способ получения пигментной двуокиси титана 1973
  • Двернякова Ада Арсеньевна
  • Ивченко Людмила Евгеньевна
SU460289A1
Способ получения гликопептидных антибиотиков А82846А, А82846В и А82846С или их солей, штамм актиномицета NocaRDIa оRIеNтаLIS NRRL 18098-продуцент гликопептидных антибиотиков А82846А, А82846В и А82846С, Штамм актиномицета NocaRDIa оRIеNтаLIS NRRL 18099-продуцент гликопептидных антибиотиков А82846А, А82846В и А82846С и штамм актиномицета NocaRDIa оRIеNтоLIS NRRL 18100-продуцент гликопептидных антибиотиков А82846А, А82846В и А82846С. 1987
  • Роберт Л.Хэмилл
  • Джеймс Альберт Мейб
  • Дэвид Фрэнсис Мэхони
  • Вальтер Мицуо Накацукаса
  • Рэймонд Че-Фонг Яо
SU1724015A3

RU 2 618 879 C1

Авторы

Ильин Александр Петрович

Назаренко Ольга Брониславовна

Смирнова Валентина Владимировна

Даты

2017-05-11Публикация

2016-04-27Подача