Способ электролитического осаждения коррозионностойких антифрикционных покрытий сплавом на основе меди Российский патент 2017 года по МПК C25D3/58 

Описание патента на изобретение RU2619012C1

Изобретение относится к области гальваностегии, в частности к способам электролитического осаждения коррозионностойких антифрикционных покрытий сплавом на основе меди, и может быть использовано в машиностроении, автомобилестроении, морском транспорте и в других отраслях промышленности для улучшения прочностных и эксплуатационных характеристик трущихся поверхностей узлов трения скольжения.

Известен способ электролитического осаждения антифрикционных покрытий сплавом на основе меди в электролите, содержащем борфтористые соли олова (II), сурьмы (III), меди (II) (патент RU №2456486, С22С 13/02, 2012).

Недостатком данного способа является невозможность получения коррозионностойких гальванических покрытий сплавом на основе меди для работы при повышенных температурах в средах минеральных масел и органических кислот дизельного топлива и ограниченность применения в узлах трения скольжения, эксплуатируемых при высоких ударных нагрузках.

Наиболее близким по технической сущности к предлагаемому изобретению является способ электролитического осаждения коррозионностойких антифрикционных покрытий сплавом на основе меди в электролите, содержащем свинец (II) борфтористый, олово (II) борфтористое, медь (II) борфтористую, борфтористоводородную кислоту, борную кислоту, антиокислитель и поверхностно-активное вещество (патент RU №2166568, C25D 3/56, 1999).

Недостатками данного способа являются низкие коррозийная стойкость и твердость антифрикционных покрытий.

Техническим результатом предлагаемого изобретения является повышение абразивной и коррозийной стойкости антифрикционных покрытий сплавом на основе меди в условиях фреттинг-коррозии, снижение коэффициента трения, повышение твердости, износостойкости и термической стабильности материала.

Технический результат достигается в способе электролитического осаждения коррозионностойких антифрикционных покрытий сплавом на основе меди в электролите, содержащем медь (II) борфтористую, олово (II) борфтористое, кислоту борфтористую, антиокислитель, поверхностно-активное вещество и кислоту борную при следующем соотношении компонентов, г/л:

медь (II) борфтористая (в пересчете на металл) 55-70 олово (II) борфтористое (в пересчете на металл) 40-45 кислота борфтористая 110-200 кислота борная 40-100 антиокислитель 4-10 поверхностно-активное вещество 0,5-2,5 катодная плотность тока, А/дм2 2,0-10 температура, °C 18-25

В качестве антиокислителя используют по меньшей мере одно вещество, выбранное из группы, включающей резорцин, гидрохинон, β-нафтол, фенотиазиновый краситель, фенолсульфоновую кислоту, сульфированный ортокрезол.

В качестве поверхностно-активного вещества используют по меньшей одно вещество, выбранное из группы, включающей желатин, синтанол АЛМ-20, клей, пентон, крезол, танин, синтанол АЛМ-10, препарат ОС-20, вещество ОП-7, вещество ОП-10, 4-нонилфенол.

Высокое содержание меди (II) борфтористой в электролите позволяет получить повышенную твердость покрытия, увеличивает усталостную прочность.

Повышенное содержание олова (II) борфтористого в электролите позволяет получить вязкую, пластичную основу покрытия, менее склонную к усталостным разрушениям.

Содержание в электролите борфтористой кислоты в количестве 110-120 г/л позволяет значительно снизить величину предельного тока и обеспечить стабильность электролита.

Введение в электролит борной кислоты в концентрации насыщенного раствора (40-100 г/л) способствует повышению стабильности состава электролита в процессе электролиза и при хранении.

Введение в электролит одного или нескольких антиокислителей позволяет затормозить процесс перехода ионов двухвалентного олова в ионы четырехвалентного олова в процессе эксплуатации и во время хранения.

Введение в электролит одного или нескольких поверхностно-активных веществ позволяет получать гладкие, с заданной гомогенной структурой покрытия.

Соотношение компонентов в электролите необходимо поддерживать в вышеуказанных пределах. Отклонение от этих пределов приводит к получению некачественных низкокоррозионностойких антифрикционных покрытий сплавом на основе меди (II).

Пример конкретной реализации способа электролитического осаждения коррозионностойких антифрикционных покрытий сплавом на основе меди

В ванну с дистиллированной водой вводят 150 г/л борфтористой кислоты. Затем добавляют борную кислоту в количестве 75 г/л (до насыщения). В полученный раствор борфтористой и борной кислот последовательно добавляют медь (II) борфтористую 60 г/л (в пересчете на металл) и олово (II) борфтористое 40 г/л (в пересчете на металл). В полученный раствор кислот и солей последовательно добавляют по меньшей мере один антиокислитель, выбранный из группы: резорцин 10 г/л, гидрохинон 10 г/л, β-нафтол 10 г/л, фенотиазиновый краситель 4 г/л, фенолсульфоновая кислота 5 г/л, сульфированный ортокрезол 4 г/л.

В случае использования двух и более антиокислителей суммарное количество этих антиокислителей должно быть в пределах 4-10 г/л.

После чего в полученный раствор кислот, солей и антиокислителей последовательно вводят по меньшей мере одно поверхностно-активное вещество, выбранное из группы: желатин 0,5 г/л, синтанол АЛМ-2 г/л, клей 2 г/л, пентон 2 г/л, крезол 2 г/л, танин 1 г/л, синтанол АЛМ-10 2,5 г/л, препарат ОС-20 2 г/л, вещество ОП-7 2,5 г/л, вещество ОП-10 2,5 г/л, 4-нонилфенол 2 г/л.

В случае использования двух и более поверхностно-активных веществ суммарное количество этих веществ должно быть в пределах 0,5-2,5 г/л.

В таблице 1 приведены примеры состава электролита.

В таблице 2 приведены физико-механические свойства коррозионностойких антифрикционных покрытий сплавом на основе меди с разным составом электролита (примеры в таблице 1).

Предложенный способ электролитического осаждения коррозионностойких антифрикционных покрытий сплавом на основе меди позволяет повысить абразивную и коррозийную стойкость покрытий в условиях фреттинг-коррозии, снизить коэффициент трения, повысить твердость, износостойкость и термическую стабильность материала.

Похожие патенты RU2619012C1

название год авторы номер документа
Способ электролитического осаждения антифрикционных покрытий сплавом на основе олова 2016
  • Буянов Алексей Игоревич
  • Буянов Игорь Михайлович
  • Мельников Анатолий Васильевич
RU2620215C1
Кислый электролит для нанесения антифрикционного покрытия сплавом свинец-олово-медь 2020
  • Буянов Алексей Игоревич
  • Буянов Игорь Михайлович
  • Куст Андрей Георгиевич
  • Маслова Елена Николаевна
  • Мельников Анатолий Васильевич
  • Отдельнов Сергей Леонидович
  • Ханина Любовь Ивановна
  • Шпак Павел Васильевич
RU2739899C1
Электролит для нанесения антифрикционных покрытий 2023
  • Буянов Алексей Игоревич
  • Буянов Игорь Михайлович
  • Мельников Анатолий Васильевич
  • Бутырин Сергей Николаевич
RU2820009C1
Элемент скольжения 2018
  • Буянов Алексей Игоревич
  • Буянов Игорь Михайлович
  • Мельников Анатолий Васильевич
RU2712496C1
Селективный травитель многокомпонентных гальванических покрытий на основе олова и свинца 2018
  • Буянов Алексей Игоревич
  • Буянов Игорь Михайлович
  • Деркач Ирина Васильевна
  • Калугина Татьяна Ивановна
  • Мельников Анатолий Васильевич
  • Симаков Александр Владимирович
  • Литвинова Галина Александровна
RU2690871C1
Способ получения медной проволоки с покрытием на основе сплава олово-индий 2021
  • Семенов Владислав Львович
  • Александров Рустам Иванович
  • Кузьмин Михаил Владимирович
  • Рогожина Лина Геннадьевна
  • Иванова Кристина Юрьевна
  • Патьянова Алиса Олеговна
RU2764277C1
Способ получения медной проволоки с покрытием на основе сплава олово-индий 2021
  • Семенов Владислав Львович
  • Александров Рустам Иванович
  • Кузьмин Михаил Владимирович
  • Рогожина Лина Геннадьевна
  • Иванова Кристина Юрьевна
  • Патьянова Алиса Олеговна
RU2764274C1
Способ получения медной проволоки с покрытием на основе сплава олово-индий 2021
  • Семенов Владислав Львович
  • Александров Рустам Иванович
  • Кузьмин Михаил Владимирович
  • Рогожина Лина Геннадьевна
  • Иванова Кристина Юрьевна
  • Патьянова Алиса Олеговна
RU2768620C1
Многослойный шатунный вкладыш коленчатого вала 2023
  • Буянов Алексей Игоревич
  • Буянов Игорь Михайлович
  • Мельников Анатолий Васильевич
RU2813220C1
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЙ НА СТАЛЬНЫЕ ДЕТАЛИ 1993
  • Рябой А.Я.
  • Вашенцева С.М.
  • Хатырева В.В.
  • Шлугер М.А.
  • Ховрин Е.В.
RU2103424C1

Реферат патента 2017 года Способ электролитического осаждения коррозионностойких антифрикционных покрытий сплавом на основе меди

Изобретение относится к области гальваностегии, в частности к способам электролитического осаждения покрытий из сплава на основе меди, и может быть использовано в машиностроении, автомобилестроении, морском транспорте и других отраслях промышленности. Способ включает электролитическое осаждение покрытия в электролите, содержащем, г/л: медь (II) борфтористую (в пересчете на металл) 55-70, олово (II) борфтористое (в пересчете на металл) 40-45, кислоту борфтористую 110-200, кислоту борную 40-100, антиокислитель 4-10, поверхностно-активное вещество 0,5-2,5, при катодной плотности тока 2,0-10,0 А/дм2 и температуре электролита 18-25°C. Технический результат: повышение абразивной и коррозионной стойкости покрытия в условиях фреттинг-коррозии, снижение коэффициента трения, повышение твердости, износостойкости и термической стабильности покрытия. 2 з.п. ф-лы, 2 табл.

Формула изобретения RU 2 619 012 C1

1. Способ электролитического осаждения коррозионностойких антифрикционных покрытий из сплава на основе меди в электролите, содержащем медь (II) борфтористую, олово (II) борфтористое, кислоту борфтористую, отличающийся тем, что в электролит дополнительно вводят антиокислитель, поверхностно-активное вещество и кислоту борную при следующем соотношении компонентов, г/л:

медь (II) борфтористая (в пересчете на металл) 55-70 олово (II) борфтористое (в пересчете на металл) 40-45 кислота борфтористая 110-200 кислота борная 40-100 антиокислитель 4-10 поверхностно-активное вещество 0,5-2,5

а покрытие осаждают при катодной плотности тока 2,0-10,0 А/дм2 и температуре электролита 18-25°C.

2. Способ по п. 1, отличающийся тем, что в качестве антиокислителя используют по меньшей мере одно вещество, выбранное из группы, включающей резорцин, гидрохинон, β-нафтол, фенотиазиновый краситель, фенолсульфоновую кислоту и сульфированный ортокрезол.

3. Способ по п. 1, отличающийся тем, что в качестве поверхностно-активного вещества используют по меньшей одно вещество, выбранное из группы, включающей желатин, синтанол АЛМ-20, клей, пентон, крезол, танин, синтанол АЛМ-10, препарат ОС-20, вещество ОП-7, вещество ОП-10 и 4-нонилфенол.

Документы, цитированные в отчете о поиске Патент 2017 года RU2619012C1

ЭЛЕКТРОЛИТ ДЛЯ НАНЕСЕНИЯ ТРЕХКОМПОНЕНТНОГО АНТИФРИКЦИОННОГО ПОКРЫТИЯ 1999
  • Кузнецов А.С.
RU2166568C1
ЭЛЕКТРОЛИТ БРОНЗИРОВАНИЯ 1997
  • Лукомский Ю.Я.
  • Кунина О.Л.
RU2130513C1
CN 104674314 A, 03.06.2015
CN 1133903 A, 23.10.1996.

RU 2 619 012 C1

Авторы

Буянов Алексей Игоревич

Буянов Игорь Михайлович

Мельников Анатолий Васильевич

Куст Андрей Георгиевич

Даты

2017-05-11Публикация

2016-05-31Подача