УСТРОЙСТВО ФОРМИРОВАНИЯ ПРОСТРАНСТВЕННОЙ ИНФОРМАЦИИ Российский патент 2017 года по МПК G08B23/00 

Описание патента на изобретение RU2619049C1

Изобретение относится к области авиационной техники и может быть использовано в составе бортового оборудования летательных аппаратов (ЛА), на которых в составе пилотажно-навигационного комплекса установлены электронные индикаторы отображения навигационной, пилотажной информации и выдачи информации о параметрах и состоянии силовой установки и общесамолетных систем.

Известна система электронной индикации «СЭИ-85-2» (СЭИ), предназначенная для приема, преобразования и отображения на экранах электронных индикаторов пилотажно-навигационной информации, выбранная в качестве прототипа.

Функционально СЭИ состоит из следующих блоков:

- блоки электронного индикатора ИМ-8;

- блоки вычисления и формирования БВФ-1-2;

- пульты системы индикации ПУ СЭИ-2-1 (ПСИ-95М).

Блоки электронного индикатора ИМ-8 предназначены для отображения пилотажно-навигационной информации и в зависимости от состава индицируемых параметров выполняют функции:

- комплексного пилотажного индикатора (КПИ);

- комплексного индикатора навигационной обстановки (КИНО).

Блоки вычисления и формирования БВФ-1-2 предназначены для приема и обработки входных сигналов и параметров, формирования отображаемой на экранах индикаторов информации и выдачи информации в смежные системы.

Пульты системы индикации ПСИ-95М предназначены для ручного управления конфигурацией и режимами системы.

Каждый блок обеспечивает прием информации от систем пилотажно-навигационного комплекса по кодовым линиям связи разовых команд от самолетных систем (шасси, закрылки, кнопок на ручках управления двигателями (РУД)).

Недостатком системы является отсутствие возможности экипажа проводить оценку пространственной информации (внекабинной обстановки - ландшафтов аэродромов) по строительной оси летательного аппарата в поле зрения командира при неблагоприятных погодных условиях видимости при выполнении режимов «ДВИЖЕНИЕ ПО АЭРОДРОМУ», «ВЗЛЕТ» или «ПОСАДКА». Недостаток влечет за собой повышенную психологическую напряженность экипажа, вероятность ошибочных действий, влияющих на безопасность выполнения режимов в соответствии с требованиями документов (РЛЭ Ту-204, Ту-214).

Целью изобретения является повышение информационности системы в поле зрения командира экипажа при неблагоприятных погодных условиях видимости аэродромной обстановки и безопасности выполнения полетного задания.

Поставленная цель достигается тем, что в устройство, содержащее блоки вычисления и формирования индикации, пульты системы индикации, блоки электронных индикаторов, дополнительно введен индикатор, выполненный в виде цифрового прозрачного монитора со встроенным компьютером и элементами крепления, при помощи которых индикатор крепится на козырек приборной доски пилотов, при этом индикатор электрически соединен с блоками вычисления и формирования индикации.

Блок-схема устройства представлена на Фиг. 1.

1, 2 - блоки вычисления и формирования индикации БВФ-1-2,

3, 4 - пульты системы индикации ПУ СЭИ-2-1,

5, 6 - блоки электронных индикаторов ИМ-8 (формат КПИ),

7, 8 - блоки электронных индикаторов ИМ-8 (формат КИНО),

9 - индикатор синтезированного изображения (монитор, встроенный компьютер, элементы крепления индикатора),

10 - козырек приборной доски пилотов.

Устройство работает следующим образом. Индикатор 9 элементами крепления неподвижно закреплен на верхней поверхности козырька приборной доски пилотов 10 параллельно лобовому стеклу командира экипажа, при этом монитор индикатора 9 электрически состыкован с встроенным компьютером, который USB-портом электрически соединен с блоками вычисления и формирования индикации системы 1 и 2. Блоки 1 и 2 командами с пультов 3 и 4 формируют автономное или автоматическое управление работой индикатора 9 в части включения и выключения монитора, при этом транслируют динамические параметры управления синтезированным изображением монитора соответствующего пространственного изображения в реальном масштабе времени. Встроенный компьютер индикатора 9 является основным аппаратно-программным органом управления работой монитора.

Режим работы устройства формируется действиями членов экипажа и автоматически:

1. Выбор формата КПИ вручную осуществляется соответствующими органами управления пульта ПСИ-95М:

КПИ - пилотажная информация (высотно-скоростные параметры, заданные и предельные значения параметров, авиагоризонт и др.) в объеме, необходимом для каждого этапа полета.

Объем определяется следующими режимами работ КПИ:

«ЗЕМЛЯ» (разбег, пробег, руление);

«ВЗЛЕТ» (уход на 2-й круг);

«МАРШРУТ»;

«ПОСАДКА».

2. Включение и выключение режимов индикации «ЗЕМЛЯ», «ВЗЛЕТ», «МАРШРУТ» производится автоматически по сигналам разовых команд, поступающих от концевых выключателей шасси, закрылков и кнопок на ручках управления двигателями (РУД).

3. Включение режима «ПОСАДКА» производится автоматически по сигналам от вычислительной системы управления полетом (ВСУП) или вручную с ПСИ-95М.

4. Режим индикации «ПОСАДКА» автоматически переключается на режим индикации «ВЗЛЕТ» при уходе на второй круг по разовой команде от концевых выключателей кнопок на ручках управления двигателями (РУД) во взлетном положении или вручную с пульта ПСИ-95М.

При неблагоприятных погодных условиях по согласованию с командой пункта управления воздушным движением (УВД) аэропорта, командир кнопками монитора индикатора включает устройство в работу. При этом на монитор индикатора выводится рассчитанное по реальным параметрам положения ЛА синтезированное пространственное изображение ландшафта аэродрома и осуществляется его дальнейшее динамическое сопровождение. Подобное осуществляется на комплексных тренажерах с помощью системы визуализации.

Таким образом, при неблагоприятных погодных условиях видимости выполнения режимов «ДВИЖЕНИЕ ПО АЭРОДРОМУ», «ВЗЛЕТ» или «ПОСАДКА» к имеющейся информации от датчиков систем оборудования самолета, выводимой на электронные индикаторы КПИ, КИНО, экипажу дополнительно на монитор индикатора выводится соответствующее режиму синтезированное пространственное изображение.

Процесс формирования и динамическое управление изображением осуществляется программами встроенного компьютера по параметрической информации управления, поступающей из блоков вычисления и формирования индикации БВФ-1-2 в соответствии с режимом. При этом из базы данных ландшафтов аэродромов встроенного компьютера выбирается соответствующее координатам места положения ЛА синтезированное изображение в пространстве аэропорта в реальном масштабе времени.

Таким образом, обеспечивается близкое к реальному восприятие экипажем информации о положении ЛА в пространстве ландшафта аэродрома, за счет чего происходит снижение загрузки и напряженности экипажа и, в конечном итоге, уменьшение вероятности ошибочных действий, т.е. повышение безопасности выполнения режимов и экономии ресурсов оборудования и топлива.

На Фиг. 2 представлен вид реальной пространственной обстановки на индикаторе командира экипажа и лобовых иллюминаторов при выключенном индикаторе при благоприятных погодных условиях положения самолета над ВПП режима «ПОСАДКА».

Таким образом, экипаж оценивает положение ЛА в натуральном ландшафте аэродрома при выключенном индикаторе в реальном масштабе времени. Аналогично происходит и при выполнении других режимов «ДВИЖЕНИЕ ПО АЭРОДРОМУ», «ВЗЛЕТ».

На Фиг. 3 представлен вид реальной пространственной обстановки на индикаторе командира экипажа и лобовых иллюминаторов при выключенном индикаторе при неблагоприятных погодных условиях положения самолета над ВПП режима «ПОСАДКА». Выполнение режима не представляется возможным и командами управления УВД командиру экипажа, ЛА направляется на запасной аэродром.

На Фиг. 4 представлена пространственная обстановка при неблагоприятных погодных условиях положения самолета над ВПП режима «ПОСАДКА». Синтезированная пространственная обстановка на индикаторе командира экипажа при включенном индикаторе и реальная в поле зрения второго пилота. Аналогично происходит и при выполнении других режимов «ДВИЖЕНИЕ ПО АЭРОДРОМУ», «ВЗЛЕТ».

Промышленная применимость

С использованием материалов заявляемого изобретения было проведено моделирование работы индикатора и исследования на стендовой базе АО «НИИАО» которые показали, что предлагаемое техническое решение позволяет:

- управлять моментами включения и выключения электропитания индикатора в работу автономно клавишами монитора, при этом решение о режиме работы индикатора принимает командир экипажа,

- при неблагоприятных погодных условиях видимости выполнения режимов «ДВИЖЕНИЕ ПО АЭРОДРОМУ», «ВЗЛЕТ» или «ПОСАДКА» обеспечивать взаимодействие индикатора с оборудованием ЛА, обеспечивающее формирование параметрических параметров управления индикатором,

- выполнить на реальном ЛА режимы тренировок летного состава и инженерно-технического персонала - "Режим шторки",

- обеспечить формирование и динамическое управление синтезированным пространственным изображением соответствующего координатам места сопровождения выполнения режима полетного задания в реальном масштабе времени,

- снизить психологическую напряженность экипажа, представляя командиру близкую к реальной информацию о положении ЛА в пространстве аэродромного ландшафта, при выполнении режимов

В конечном итоге техническое решение позволяет уменьшить вероятность ошибочных действий экипажа, повысить безопасность выполнения режимов «ДВИЖЕНИЕ ПО АЭРОДРОМУ», «ВЗЛЕТ» или «ПОСАДКА», экономию ресурсов оборудования и топлива в диапазоне решаемых задач режимов.

Синтезированная видеоинформация на мониторе индицируется в реальном времени с момента включения и до момента выключения индикатора с учетом выбранного режима.

В настоящее время в предлагаемом устройстве заинтересованы специалисты ВВС РФ, конструкторские бюро разработчиков ЛА с целью возможности установки его на ЛА с электронной системой индикации как в процессе модернизации, так и на вновь проектируемые ЛА.

Источник информации: РЛЭ самолетов Ту-204, Ту-214, БЕ-200, ИЛ 96-300, ИЛ-114 (разделы №8 «Эксплуатация систем и оборудования» и №8.16 «Пилотажно-навигационное оборудование и система отображения информации»).

Похожие патенты RU2619049C1

название год авторы номер документа
УСТРОЙСТВО УПРАВЛЕНИЯ ФОРМИРОВАНИЕМ ВИДЕОИНФОРМАЦИИ И ПРЕДСТАВЛЕНИЕМ В СИСТЕМЕ ЭЛЕКТРОННОЙ ИНДИКАЦИИ ЛЕТАТЕЛЬНОГО АППАРАТА 2013
  • Сучков Виталий Николаевич
  • Панкратов Рудольф Викторович
  • Родина Ирина Евгеньевна
  • Трошина Ольга Петровна
  • Насенков Игорь Георгиевич
RU2605512C2
СИСТЕМА ВИЗУАЛИЗАЦИИ ПОЛЕТА И КОГНИТИВНЫЙ ПИЛОТАЖНЫЙ ИНДИКАТОР ОДНОВИНТОВОГО ВЕРТОЛЕТА 2012
  • Егоров Валерий Николаевич
  • Буркина Ирина Владимировна
RU2497175C1
СПОСОБ ОБЕСПЕЧЕНИЯ РЕЗЕРВНОГО ВОЗВРАТА ОДНОМЕСТНОГО БОЕВОГО ЛЕТАТЕЛЬНОГО АППАРАТА ПРИ ОТКАЗЕ ЦЕНТРАЛЬНОГО ВЫЧИСЛИТЕЛЯ 2023
  • Баранов Александр Сергеевич
  • Бобров Сергей Викторович
  • Грибов Дмитрий Игоревич
  • Дибин Александр Борисович
  • Максаков Константин Павлович
  • Машков Николай Анатольевич
  • Стрелец Михаил Юрьевич
RU2807539C1
УСТРОЙСТВО СИНТЕЗА КАРТОГРАФИЧЕСКИХ ИЗОБРАЖЕНИЙ 2004
  • Бабак В.П.
  • Быков В.Н.
  • Виноградов Ю.Н.
  • Ильченко Ю.А.
  • Парамонов П.П.
  • Суслов В.Д.
  • Сухомлинов Д.В.
  • Уткин Б.В.
  • Юшинский Ю.Т.
RU2250182C1
БОРТОВАЯ ИНТЕГРИРОВАННАЯ СИСТЕМА ИНФОРМАЦИОННОЙ ПОДДЕРЖКИ ЭКИПАЖА И КОГНИТИВНЫЙ ФОРМАТ ПРЕДСТАВЛЕНИЯ ПОЛЕТНОЙ ИНФОРМАЦИИ НА ЭТАПЕ "ВЗЛЕТ" МНОГОДВИГАТЕЛЬНОГО ВОЗДУШНОГО СУДНА 2013
  • Егоров Валерий Николаевич
  • Архипов Владимир Алексеевич
  • Буркина Ирина Владимировна
  • Олаев Виталий Алексеевич
  • Углов Андрей Александрович
RU2550887C2
Комплекс бортового оборудования вертолетов и самолетов авиации общего назначения 2016
  • Макаров Николай Николаевич
  • Мануйлов Иван Юрьевич
  • Гринкевич Олег Петрович
  • Кузнецов Олег Игоревич
  • Крылов Дмитрий Львович
  • Азов Максим Сергеевич
  • Назаров Сергей Васильевич
RU2640076C2
УЧЕБНО-ТРЕНИРОВОЧНЫЙ КОМПЛЕКС АВИАЦИОННЫЙ 2004
  • Демченко О.Ф.
  • Долженков Н.Н.
  • Попович К.Ф.
  • Школин В.П.
  • Гуртовой А.И.
  • Сорокин В.Ф.
  • Кодола В.Г.
RU2250511C1
СИСТЕМА ИНДИКАЦИИ ВЗЛЕТА И ПОСАДКИ ЛЕТАТЕЛЬНЫХ АППАРАТОВ 2016
  • Нараленков Михаил Кириллович
  • Прядкин Сергей Петрович
  • Шевченко Роман Алексеевич
  • Шкурко Николай Константинович
RU2647344C2
КОМПЛЕКС УПРАВЛЕНИЯ ЛЕТАТЕЛЬНЫМИ АППАРАТАМИ 2004
  • Бегичев Юрий Иванович
  • Варочко Алексей Григорьевич
  • Козиоров Лев Михайлович
  • Котицын Леонид Олегович
  • Луканичев Владимир Юрьевич
  • Мосеев Кирилл Владимирович
  • Сильвестров Михаил Михайлович
  • Сопин Анатолий Петрович
RU2270471C1
АВТОМАТИЧЕСКАЯ ИНСТРУМЕНТАЛЬНАЯ СИСТЕМА ПЕРЕДАЧИ МЕТЕОРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК АЭРОДРОМА И ВВОДА ИХ В ПИЛОТАЖНО-НАВИГАЦИОННЫЙ КОМПЛЕКС УПРАВЛЕНИЯ ПОЛЕТОМ САМОЛЕТА 2012
  • Кочергин Игорь Николаевич
RU2519622C2

Иллюстрации к изобретению RU 2 619 049 C1

Реферат патента 2017 года УСТРОЙСТВО ФОРМИРОВАНИЯ ПРОСТРАНСТВЕННОЙ ИНФОРМАЦИИ

Изобретение относится к области авиационной техники и может быть использовано в составе бортового оборудования летательных аппаратов, на которых в составе пилотажно-навигационного комплекса установлены многофункциональные индикаторы (МФК) отображения навигационной, пилотажной информации и выдачи информации о параметрах и состояния силовой установки и общесамолетных систем. Технический результат – расширение функциональных возможностей на основе повышения информативности системы в поле зрения командира экипажа при неблагоприятных погодных условиях видимости аэродромной обстановки и безопасности выполнения полетного задания. Для этого в устройство, содержащее блоки вычисления и формирования индикации, пульты системы индикации, блоки электронных индикаторов, дополнительно введен индикатор, выполненный в виде цифрового прозрачного монитора со встроенным компьютером и элементами крепления, при помощи которых индикатор крепится на козырек приборной доски пилотов, при этом индикатор электрически соединен с блоками вычисления и формирования индикации. При неблагоприятных погодных условиях по согласованию с командой пункта управления воздушным движением аэропорта, командир кнопками монитора индикатора включает устройство в работу, при этом на монитор индикатора выводится рассчитанное по реальным параметрам положения летательного аппарата (ЛА) синтезированное пространственное изображение ландшафта аэродрома и осуществляется его дальнейшее динамическое сопровождение в реальном масштабе времени. 4 ил.

Формула изобретения RU 2 619 049 C1

Устройство формирования пространственной информации, содержащее блоки вычисления и формирования индикации, пульты системы индикации, блоки электронных индикаторов, отличающееся тем, что в него дополнительно введен индикатор, выполненный в виде цифрового прозрачного монитора со встроенным компьютером и элементами крепления, при помощи которых индикатор крепится на козырек приборной доски пилотов, при этом выходы блоков вычисления и формирования индикации соединены электрически с входами встроенного компьютера индикатора

Документы, цитированные в отчете о поиске Патент 2017 года RU2619049C1

Ротационный фильтр-пресс для отжатия торфяной массы, подвергшейся коагулированию, и т.п. работ 1924
  • Кирпичников В.Д.
  • Классон Р.Э.
  • Стадников Г.Л.
SU204A1
Руководство по полетной эксплуатации
Изд-е
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Кн
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
ОАО "Туполева", 2005
Пилотажно-навигационное оборудование - СЭИ, рис
Топка с несколькими решетками для твердого топлива 1918
  • Арбатский И.В.
SU8A1
Топка с несколькими решетками для твердого топлива 1918
  • Арбатский И.В.
SU8A1
Задний затвор для букс железнодорожных вагонов 1959
  • Виноградов Г.П.
  • Жигалов А.В.
  • Трещалин И.М.
  • Щербаков Е.И.
SU124965A2
БОРТОВАЯ ИНТЕГРИРОВАННАЯ СИСТЕМА ИНФОРМАЦИОННОЙ ПОДДЕРЖКИ ЭКИПАЖА И КОГНИТИВНЫЙ ФОРМАТ ПРЕДСТАВЛЕНИЯ ПОЛЕТНОЙ ИНФОРМАЦИИ НА ЭТАПЕ "ВЗЛЕТ" МНОГОДВИГАТЕЛЬНОГО ВОЗДУШНОГО СУДНА 2013
  • Егоров Валерий Николаевич
  • Архипов Владимир Алексеевич
  • Буркина Ирина Владимировна
  • Олаев Виталий Алексеевич
  • Углов Андрей Александрович
RU2550887C2
Устройство для прогнозирования состояния систем управления 1989
  • Ботуз Сергей Павлович
SU1679195A1
Высокоавтоматизированный самолет: теория и практика летной эксплуатации/ В.Н
Рисухин, С.Г
Тульский, В.В
Козлов и др
М.: Авиационная шола Аэрофлота, 2011, с
Способ обработки грубых шерстей на различных аппаратах для мериносовой шерсти 1920
  • Меньшиков В.Е.
SU113A1

RU 2 619 049 C1

Авторы

Авакян Александр Анушаванович

Панкратов Рудольф Викторович

Феоктистов Егор Константинович

Воробьев Александр Владимирович

Насенков Игорь Георгиевич

Даты

2017-05-11Публикация

2016-02-11Подача