Композиционный сорбент для газовой среды (варианты) Российский патент 2017 года по МПК B01J20/26 B01J20/24 B01J20/10 

Описание патента на изобретение RU2624444C1

Изобретение относится к области очистки газов от органических и неорганических химических веществ, в частности к получению сорбционных материалов, и может быть использовано для очистки воздушной среды.

Считается, что частицы, обладающие наноразмерными характеристиками, являются перспективными адсорбентами, позволяющими аккумулировать и хранить некоторые газы. Исследования осуществляются с использованием плоских, шарообразных и трубчатых наночастиц.

Известно, что в результате применения продукта «Форум», полученного из промышленных отходов производства блочного политетрафторэтилена термическим методом, в качестве добавки к машинным маслам снижается уровень оксида углерода и оксидов азота в выхлопных газах [Бузник В.М. Состояние отечественной химии фторполимеров и возможные перспективы развития. Российский химический журнал (Ж. Рос. хим. общ-ва им. Д.И. Менделеева), 2008, том LII, №3].

Известен сорбент, состоящий из минерального носителя (природные и синтетические силикаты и/или алюмосиликаты) и полимерного модификатора (полиэтилен, полипропилен или каучуки), пластифицированного олигомерами этилена, сложными алифатическими и ароматическими эфирами двух- и трехосновных кислот [RU 2462302 С2. Сорбент для очистки газовоздушных смесей, грунтовых и сточных вод от нефтяных и топливных углеводородов и способ его получения. Авторы: Бреус В.А., Неклюдов С.А., Бреус И.П., Савин А.В. Заявка 2010151615/05; заявл. 15.12.2010, опубл. 27.09.2012, бюллетень №27]. Соотношение компонентов в сорбенте в весовых единицах - минеральная основа : полимер : пластификатор =100:(5-30):(1-20). Данный сорбент получен при обработке природного или синтетического силиката, или алюмосиликата раствором или латексом, содержащим полимер и пластификатор при температуре 15-30°C, или вязкопластичной смесью полимера и пластификатора при температуре 100-180°C при перемешивании. Сорбент предназначен для сорбции нефтяных и топливных углеводородов из газовоздушных и водных сред.

К недостаткам можно отнести то, что сорбент предназначен для сорбции только углеводородов и сложный способ его получения.

Известен сорбент, состоящий из термообработанных цеолитов, модифицированных природными высокомолекулярными веществами, в качестве которых используют полисахариды - альгинаты или хитозан [RU 02184607. Способ получения органоминеральных сорбентов (варианты). Автор: Шапкин Н.П. Опубл. 10.07.2002]. Данный сорбент получен путем взаимодействия цеолитов и высокомолекулярных веществ в условиях механохимического синтеза в реакторе мельницы колебательного типа или в водной среде. Данный сорбент предназначен для извлечения различных примесей из водных растворов.

К недостаткам можно отнести то, что необходима специальная термическая обработка исходного цеолита и достаточно сложный процесс модификации цеолита природными высокомолекулярными веществами.

Известен сорбент, состоящий из силикагеля фракции 0,1-0,5 мм, полимера полигексаметиленгуанидина и гуминовых кислот [RU 2404850 С1. Способ получения сорбента для очистки воды от органических веществ. Авторы: Гавриленко М.А., Ветрова О.В. Заявка 2009113133/05; заявл. 07.04.2009, опубл. 27.11.2010, бюллетень №33].

Данный сорбент получают путем модификации силикагеля полимером полигексаметиленгуанидином с последующими промывкой и нанесением гуминовых кислот (водорастворимой фракцией торфа), повторной промывкой, высушиванием при температуре 70-100°C, при следующем соотношении компонентов, массовые %: силикагель - 76-80; полигексаметиленгуанилин - 10-12; гуминовые кислоты - 10-12.

Областью использования заявленного изобретения является очистка загрязненных вод от различных органических веществ.

К недостаткам можно отнести сложную процедуру подготовки сорбента.

Ближайшим аналогом заявленного композиционного сорбента является углеродный материал с упорядоченной наноструктурой [RU 2502668 С1. Способ получения углеродного наноматериала и углеродный наноматериал. Автор: Курявый В.Г. Опубл. 27.12.2013].

Твердый политетрафторэтилен подвергают пиролизу без доступа воздуха в плазме импульсного высоковольтного электрического разряда при атмосферном давлении с амплитудой импульсов не менее 9 кВ.

Полученный углеродный материал содержит структурные элементы в виде обесфторенных частично графитизированных надмолекулярных цепочечных структур ПТФЭ толщиной 30-100 нм, образованных волокнами диаметром 1-2 нм, переплетенными случайным образом в гомогенную пористую массу с размерами пор 1-2 нм.

Состав и строение полученного материала определяют его очень высокую удельную поверхность, высокую сорбционную емкость.

К недостаткам можно отнести сложную процедуру процесса пиролиза.

Для получения всех вышеперечисленных композиционных сорбентов требуются достаточно сложные предварительные операции по подготовке основы для сорбента, что усложняет и удорожает процесс получения композиционного сорбента.

Задачей изобретения является создание нового сорбента, обладающего высокими сорбционными свойствами, высокой эффективностью очистки воздуха от органических и неорганических химических веществ.

Технический результат состоит в повышении степени очистки воздуха от газов органического и неорганического происхождения.

Технический результат достигается тем, что предлагаемый сорбент для газообразной среды состоит из силикагеля (вариант 1) или гидролизного лигнина (вариант 2) в качестве основы и частиц ультрадисперсного политетрафторэтилена, образующихся при термодеструкции твердых отходов политетрафторэтилена методом исчерпывающего фторирования.

Раскрытие изобретения

Композиционный сорбент (вариант 1) состоит из силикагеля в качестве основы, при этом на поверхности частиц силикагеля, и частично в объеме, закреплены частицы ультрадисперсного политетрафторэтилена.

Частицы ультрадисперсного политетрафторэтилена образуются в результате термодеструкции твердых отходов ПТФЭ методом исчерпывающего фторирования в присутствии катализатора трифторида кобальта.

Процесс термодеструкции отходов политетрафторэтилена осуществляется по ранее определенным условиям в муфельной печи в интервале температур 430-500°C [RU 2528054 С2. Способ переработки фторопластов и материалов, их содержащих, с получением ультрадисперсного фторопласта и перфторпарафинов. Авторы: Хитрин С.В., Фукс С.Л., Казиенков С.А., Филатов В.Ю., Суханова Е.Н. Заявка 2011149496/04; заявл. 05.12.2011, опубл. 10.09.2014, бюллетень №25]. Образующиеся в результате частицы мелкодисперсного порошка - ультрадисперсного политетрафторэтилена выводятся из реактора и попадают в колбу-приемник, заполненную силикагелем. Полученные системы силикагель - частицы ультрадисперсного политетрафторэтилена используются для очистки потока воздуха от диоксида азота и бензола.

Композиционный сорбент (вариант 2) состоит из гидролизного лигнина в качестве основы, при этом на поверхности частиц гидролизного лигнина, и частично в объеме, закреплены частицы ультрадисперсного политетрафторэтилена.

Частицы ультрадисперсного политетрафторэтилена образуются в результате термодеструкции твердых отходов политетрафторэтилена методом исчерпывающего фторирования в присутствии катализатора трифторида кобальта.

Процесс термодеструкции отходов политетрафторэтилена осуществляется по ранее определенным условиям в муфельной печи в интервале температур 430-500°C [RU 2528054 С2. Способ переработки фторопластов и материалов, их содержащих, с получением ультрадисперсного фторопласта и перфторпарафинов. Авторы: Хитрин С.В., Фукс С.Л., Казиенков С.А., Филатов В.Ю., Суханова Е.Н. Заявка 2011149496/04; заявл. 05.12.2011, опубл. 10.09.2014, бюллетень №25]. Образующиеся в результате частицы мелкодисперсного порошка - ультрадисперсного политетрафторэтилена выводятся из реактора и попадают в колбу-приемник, заполненную гидролизным лигнином. Полученные системы гидролизный лигнин - частицы ультрадисперсного политетрафторэтилена используются для очистки потока воздуха от диоксида азота, бензола, смеси бензола и кислоты димера окиси гексафторпропилена.

Ниже приведены примеры получения изобретения.

Пример 1. В реактор для получения ультрадисперсного политетрафторэтилена помещают 10 г политетрафторэтилена и 50 г трифторида кобальта. Реактор помещают в муфельную печь. В процессе термодеструкции политетрафторэтилена образуется газовая фаза и ультрадисперсный политетрафторэтилен.

Колбу-приемник заполняют силикагелем (масса силикагеля 40-41 г). Через приемник пропускают образующиеся в процессе термодеструкции смесь газов и мелкодисперсного порошка - ультрадисперсного политетрафторэтилена. В результате масса приемника увеличивается на 2,0-2,5 г.

Через колбу-приемник проходит газовый поток со скоростью 2-2,5 л/мин, содержащий диоксид азота.

Концентрацию диоксида азота определяли на входе в приемник, заполненный силикагелем с частицами ультрадисперсного политетрафторэтилена, и на выходе из него.

Средняя степень очистки системой силикагель - частицы ультрадисперсного политетрафторэтилена составила 85% (для силикагеля - 79%).

Пример 2. В отличие от способа, описанного в примере 1, через колбу-приемник проходит газовый поток, содержащий бензол.

Концентрацию бензола определяли на входе в приемник, заполненный силикагелем с частицами ультрадисперсного политетрафторэтилена, и на выходе из него.

Средняя степень очистки системой силикагель - частицы ультрадисперсного политетрафторэтилена составила 74% (для силикагеля - 67%).

Пример 3. В реактор для получения ультрадисперсного политетрафторэтилена помещают 10 г политетрафторэтилена и 50 г трифторида кобальта. Реактор помещают в муфельную печь. В процессе термодеструкции политетрафторэтилена образуется газовая фаза и ультрадисперсный политетрафторэтилен.

Колбу-приемник заполняют гидролизным лигнином (масса лигнина 20-21 г). Через приемник пропускают образующиеся в процессе термодеструкции смесь газов и мелкодисперсного порошка - ультрадисперсного политетрафторэтилена. В результате масса приемника увеличивается на 0,5-1,0 г.

Через колбу-приемник проходит газовый поток со скоростью 2-2,5 л/мин, содержащий диоксид азота.

Концентрацию диоксида азота определяли на входе в приемник, заполненный гидролизным лигнином с частицами ультрадисперсного политетрафторэтилена, и на выходе из него.

Средняя степень очистки системой гидролизный лигнин - частицы ультрадисперсного политетрафторэтилена - 79% (для гидролизного лигнина - 60%).

Пример 4. В отличие от способа, описанного в примере 3, через колбу-приемник проходит газовый поток, содержащий бензол.

Концентрацию бензола определяли на входе в приемник, заполненный гидролизным лигнином с частицами ультрадисперсного политетрафторэтилена, и на выходе из него.

Средняя степень очистки системой гидролизный лигнин - частицы ультрадисперсного политетрафторэтилена - 77% (для гидролизного лигнина - 64%).

Пример 5. В отличие от способа, описанного в примере 4, последовательно установлены две колбы-приемника, каждая из которых заполнена гидролизным лигнином с нанесенными на него частицами ультрадисперсного политетрафторэтилена.

Концентрацию бензола определяли на входе в приемник I, заполненный системой гидролизный лигнин - частицы ультрадисперсного политетрафторэтилена, и на выходе из него. Средняя степень очистки составила 89%. При последовательном использовании приемника II на вход подавался газовый поток, содержащий бензол, с концентрацией в 9 раз ниже исходного значения.

Суммарная степень очистки системой гидролизный лигнин - частицы ультрадисперсного политетрафторэтилена составила 98%.

Пример 6. В отличие от способа, описанного в примере 4, через колбу-приемник проходит газовый поток, содержащий смесь бензола и кислоты димера окиси гексафторпропилена.

Концентрацию смеси газов определяли на входе в приемник, заполненный системой гидролизный лигнин - частицы ультрадисперсного политетрафторэтилена, и на выходе из него.

Средняя степень очистки системой гидролизный лигнин - частицы ультрадисперсного политетрафторэтилена составила 58% (для гидролизного лигнина - 37%).

Похожие патенты RU2624444C1

название год авторы номер документа
СПОСОБ ПЕРЕРАБОТКИ ФТОРОПЛАСТОВ И МАТЕРИАЛОВ, ИХ СОДЕРЖАЩИХ, С ПОЛУЧЕНИЕМ УЛЬТРАДИСПЕРСНОГО ФТОРОПЛАСТА И ПЕРФТОРПАРАФИНОВ 2011
  • Хитрин Сергей Владимирович
  • Фукс Софья Лейвиковна
  • Казиенков Сергей Александрович
  • Филатов Владимир Юрьевич
  • Суханова Екатерина Николаевна
RU2528054C2
Способ получения перфторпарафинов 2023
  • Цветников Александр Константинович
  • Матвеенко Людмила Александровна
  • Егоркин Владимир Сергеевич
RU2814664C1
СПОСОБ ПОЛУЧЕНИЯ ФТОРИРОВАННОГО УГЛЕРОДНОГО МАТЕРИАЛА 1992
  • Цветников А.К.
  • Назаренко Т.Ю.
RU2036135C1
СПОСОБ ПОЛУЧЕНИЯ КАТОДНОГО МАТЕРИАЛА ДЛЯ ХИМИЧЕСКИХ ИСТОЧНИКОВ ТОКА 2015
  • Цветников Александр Константинович
  • Соколов Александр Александрович
  • Опра Денис Павлович
  • Матвиенко Людмила Александровна
  • Синебрюхов Сергей Леонидович
  • Гнеденков Сергей Васильевич
  • Сергиенко Валентин Иванович
RU2597607C1
СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНОГО ФТОРОРГАНИЧЕСКОГО МАТЕРИАЛА 2007
  • Курявый Валерий Георгиевич
  • Бузник Вячеслав Михайлович
RU2341536C1
СПОСОБ ПЕРЕРАБОТКИ ПОЛИТЕТРАФТОРЭТИЛЕНА 2014
  • Курявый Валерий Георгиевич
RU2561111C1
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИТНОГО ВОЛОКНА НА ОСНОВЕ ГИДРОЛИЗНОГО ЛИГНИНА С ПОЛИАКРИЛОНИТРИЛОМ 2016
  • Лысенко Александр Александрович
  • Свердлова Наталия Ивановна
  • Виноградова Людмила Егоровна
  • Сазанов Юрий Николаевич
  • Крутов Степан Минаевич
  • Штягина Людмила Михайловна
RU2621758C1
Способ получения комплексного сорбента 2021
  • Скрипкина Татьяна Сергеевна
  • Подгорбунских Екатерина Михайловна
  • Бычков Алексей Леонидович
  • Ломовский Олег Иванович
RU2786721C1
КОМПОЗИЦИОННЫЙ ЭНТЕРОСОРБЕНТ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ 2002
  • Решетников В.И.
RU2234931C2
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ ГИДРОЛИЗНОГО ЛИГНИНА И ТРИТЕРПЕНОВОГО САПОНИНА 2021
  • Мироненко Наталья Владимировна
  • Селеменев Владимир Федорович
  • Рудакова Людмила Васильевна
RU2769981C1

Реферат патента 2017 года Композиционный сорбент для газовой среды (варианты)

Изобретение относится к области очистки газов от органических и неорганических химических веществ и может быть использовано для очистки воздушной среды. Предложен новый композиционный сорбент для газовой среды, содержащий силикагель или гидролизный лигнин в качестве основы, при этом на поверхности частиц силикагеля и лигнина, и частично в макропорах, закреплены частицы ультрадисперсного политетрафторэтилена, образующиеся в процессе термодеструкции твердых отходов политетрафторэтилена методом исчерпывающего фторирования в присутствии катализатора трифторида кобальта. Технический результат – предложенный сорбент обладает высокими сорбционными свойствами и высокой эффективностью очистки воздуха от органических и неорганических химических веществ. 2 н.п. ф-лы, 6 пр.

Формула изобретения RU 2 624 444 C1

1. Композиционный сорбент для газовой среды, состоящий из силикагеля в качестве основы и частиц ультрадисперсного политетрафторэтилена, образующихся при термодеструкции твердых отходов политетрафторэтилена методом исчерпывающего фторирования, при следующем соотношении компонентов в весовых единицах:

силикагель 16,0-20,5 ультрадисперсный политетрафторэтилен 1

2. Композиционный сорбент для газовой среды, состоящий из гидролизного лигнина в качестве основы и частиц ультрадисперсного политетрафторэтилена, образующихся при термодеструкции твердых отходов политетрафторэтилена методом исчерпывающего фторирования, при следующем соотношении компонентов в весовых единицах:

гидролизный лигнин 20-42 ультрадисперсный политетрафторэтилен 1

Документы, цитированные в отчете о поиске Патент 2017 года RU2624444C1

СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНОГО НАНОМАТЕРИАЛА И УГЛЕРОДНЫЙ НАНОМАТЕРИАЛ 2012
  • Курявый Валерий Георгиевич
RU2502668C1
US 20030153457 A1, 14.08.2003
СОРБЕНТ ДЛЯ ОЧИСТКИ ГАЗОВОЗДУШНЫХ СМЕСЕЙ, ГРУНТОВЫХ И СТОЧНЫХ ВОД ОТ НЕФТЯНЫХ И ТОПЛИВНЫХ УГЛЕВОДОРОДОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2010
  • Бреус Владимир Андреевич
  • Неклюдов Сергей Александрович
  • Бреус Ирина Петровна
  • Савин Андрей Владимирович
RU2462302C2
СПОСОБ ПОЛУЧЕНИЯ АДСОРБЕНТА ДИОКСИДА УГЛЕРОДА 2013
  • Гладышев Николай Федорович
  • Гладышева Тамара Викторовна
  • Козадаев Леонид Эдуардович
  • Путин Борис Викторович
  • Путин Сергей Борисович
  • Суворова Юлия Александровна
  • Симаненков Эдуард Ильич
RU2565172C2

RU 2 624 444 C1

Авторы

Фукс Софья Лейвиковна

Вологжанина Юлия Викторовна

Казакова Елена Владимировна

Даты

2017-07-04Публикация

2016-01-12Подача