СПОСОБ ОПРЕДЕЛЕНИЯ ДИАМЕТРА КОЛЕСА РЕЛЬСОВОГО ТРАНСПОРТНОГО СРЕДСТВА Российский патент 2017 года по МПК B61L1/16 

Описание патента на изобретение RU2628621C1

Изобретение относится к управлению движением поездов, а именно, к путевым устройствам, взаимодействующим с поездом, посредством которых определяют диаметр колеса рельсового транспортного средства.

Прототипом к заявляемому изобретению является способ определения диаметра колеса железнодорожного подвижного состава, согласно которому используют датчик определения прохода колеса, расположенный на рельсе под проезжающим колесом, имеющий две зоны детектирования, расположенные вдоль рельса, каждая из которых генерирует отклик при проходе колеса. Расстояние между зонами детектирования выбирают таким образом, чтобы функции отклика двух зон детектирования имели точку пересечения, по которой и вычисляют диаметр колеса проходящего подвижного состава (ЕР 1630518 А2, опубл. 01.03.2006).

Недостатком данного технического решения является недостаточная точность определения диаметра колеса, что вызвано значительными изменениями амплитуды отклика зон детектирования при смещении реборды колеса относительно боковой поверхности головки рельса и/или при различной степени износа колеса рельсового транспортного средства.

Техническим результатом, на который направлено заявляемое изобретение, является повышение точности определения диаметра колеса рельсового транспортного средства независимо от расстояния, на котором реборда колеса проходит от боковой поверхности головки рельса и независимо от степени износа колеса рельсового транспортного средства.

В соответствии с предлагаемым изобретением способ определения диаметра колеса рельсового транспортного средства включает использование датчика колеса и определение скорости прохода колеса, при этом датчик регистрации прохода колеса содержит по меньшей мере одну зону детектирования, предварительно определяют аппроксимирующую функцию, которой описывается отклик каждой зоны детектирования на проход колеса, и характеризующий параметр или совокупность характеризующих параметров аппроксимирующей функции, также предварительно в память датчика регистрации прохода колеса в виде таблицы соответствия заносят набор значений характеризующего параметра или совокупности характеризующих параметров аппроксимирующей функции, вычисленных по нормированным статическим характеристикам взаимодействия эталонных колес разного диаметра с зонами детектирования датчика, при этом в таблице соответствия каждому значению характеризующего параметра или каждой совокупности характеризующих параметров соответствует определенный диаметр, во время работы датчика при проходе колеса в каждой зоне детектирования в память датчика в режиме реального времени записывают значения отклика зоны детектирования в виде некоторой функции отклика, с учетом определенной фактической скорости функцию отклика преобразовывают к виду нормированной статической характеристики, определяют значение характеризующего параметра или значения совокупности характеризующих параметров аппроксимирующей функции, при которых преобразованная функция отклика с заданной точностью соответствует аппроксимирующей функции, по таблице соответствия определяют диаметр колеса рельсового транспортного средства.

Например, отклик зоны детектирования описанного в прототипе индуктивного рельсового датчика на проход колеса рельсового транспортного средства можно аппроксимировать с некоторой точностью функцией Гаусса:

где k - некоторый амплитудный коэффициент, зависящий от расстояния, на котором реборда колеса проходит от боковой поверхности головки рельса, и от степени износа колеса рельсового транспортного средства, σ - среднеквадратическое отклонение, μ - математическое ожидание.

Экспериментально установлено, что при смещении реборды колеса относительно боковой поверхности головки рельса и/или при проходе колеса различной степени износа меняется амплитуда значений отклика, но тип функции отклика сохраняется (В.В. Ляной. «Обеспечение безопасности движения железнодорожного транспорта на основе совершенствования индуктивных датчиков регистрации колеса». Транспорт Урала, №2 (49), 2016. с. 93-98). При этом величина среднеквадратического отклонения σ при некоторой фиксированной скорости прохода колеса зависит только от диаметра проходящего колеса.

Согласно изобретению предварительно в память датчика регистрации прохода колеса заносят набор значений одного характеризующего параметра или совокупности характеризующих параметров аппроксимирующей функции. Для функции Гаусса таким параметром может быть среднеквадратическое отклонение σ(n), n∈1…N, где N - количество колес с различными диаметрами. Значения σ(n) вычисляют по нормированным статическим характеристикам взаимодействия эталонных колес разного диаметра с зоной детектирования датчика.

Статическая характеристика взаимодействия каждого эталонного колеса с зоной детектирования датчика представляет собой зависимость величины отклика зоны детектирования на присутствие колеса в определенных пространственных точках зоны детектирования при некотором постоянном смещении реборды колеса относительно боковой поверхности головки рельса. Нормирование каждой статической характеристики производят относительно ее максимального значения так, чтобы максимальное значение каждой нормированной статической характеристики было равно единице, при этом все нормированные статические характеристики должны иметь сдвиг, при котором максимальное значение характеристики находится в точке х=0.

Во время работы датчика при проходе колеса в память датчика записывают значения отклика каждой зоны детектирования в виде функции ƒ(t) и определяют фактическую скорость νф прохода колеса рельсового транспортного средства.

Для определения скорости νф прохода колеса можно использовать вторую зону детектирования (как это описано, например, в US 6371417, опубл. 16.04.2002), или дополнительные устройства определения скорости νф прохода колеса (как это описано, например, в RU 2586099, опубл. 10.06.2016) и др.

Функцию ƒ(t) с учетом фактической скорости прохода колеса νф преобразовывают сначала к виду статической характеристики, делая подстановку х=t⋅νф, а затем нормируют ее относительно максимального значения функции ƒ(t) и получают нормированную статическую характеристику фактического колеса Fф(x).

Затем определяют, при каком характеризующем параметре σ(n) аппроксимирующей функции F(x) преобразованная функция отклика Fф(x) с заданной точностью ε соответствует аппроксимирующей функции F(x). Степень соответствия можно устанавливать с помощью критериев аппроксимации. В качестве критериев аппроксимации могут выступать минимальная сумма квадратов отклонений F(x) от Fф(x), предельное максимальное отклонение по абсолютной величине F(x) от Fф(x), минимальная сумма абсолютных отклонений F(x) от Fф(x) или иные.

Например, если в качестве критерия аппроксимации выбрать минимальную сумму абсолютных отклонений F(x) от Fф(x), тогда функция критерия аппроксимации R(σ) будет иметь следующий вид:

где xμ - момент появления максимального значения функции Fф(x), - X…X - область определения функции F(x), аппроксимирующей максимально возможный диаметр колеса.

Если существует такой параметр σD∈σ(n), для которого R(σD)≤ε, где ε - заданная точность аппроксимации между аппроксимирующей функцией F(x) и преобразованной функцией отклика Fф(x), тогда по таблице соответствия, хранимой в памяти датчика, определяют диаметр колеса D рельсового транспортного средства, соответствующий σD.

Для повышения точности аппроксимации отклик зоны детектирования на проход колеса рельсового транспортного средства можно аппроксимировать полиномиальной функцией:

F(x)=а01х+…+aAxA, х∈-X…X,

где a0,a1,…,аА - совокупность параметров, характеризующих аппроксимирующую функцию F(x).

С ростом степени А полиномиальной функции растет точность аппроксимации фактической функции отклика. Однако рост точности аппроксимации в необходимой области сопровождается увеличением количества перегибов всей аппроксимирующей функции. Поэтому полиномиальную аппроксимирующую функцию необходимо ограничивать некоторой областью определения х∈-X…X.

В этом случае для каждого эталонного колеса в память датчика вместо одного параметра, характеризующего аппроксимирующую функцию, заносят вычисленную по нормированным статическим характеристикам взаимодействия эталонных колес с зоной детектирования датчика совокупность характеризующих параметров

Если в качестве критерия аппроксимации выбрана минимальная сумма абсолютных отклонений F(x) от Fф(x), тогда функция критерия аппроксимации R(σ) будет иметь следующий вид:

Если существует такая совокупность параметров , для которой тогда по таблице соответствия, хранимой в памяти датчика, определяют соответствующий диаметр колеса D рельсового транспортного средства.

Таким образом, предлагаемое изобретение позволяет повысить точность определения диаметра колеса рельсового транспортного средства, в том числе при смещении реборды колеса относительно боковой поверхности головки рельса и при различной степени износа колеса рельсового транспортного средства.

Похожие патенты RU2628621C1

название год авторы номер документа
СПОСОБ РЕГИСТРАЦИИ ПРОХОДА КОЛЕСА РЕЛЬСОВОГО ТРАНСПОРТНОГО СРЕДСТВА 2016
  • Гнитько Ростислав Васильевич
  • Курганский Андрей Андреевич
  • Ляной Вадим Вадимович
  • Тильк Игорь Германович
RU2624140C1
СПОСОБ РЕГИСТРАЦИИ ПРОХОДА КОЛЕСА РЕЛЬСОВОГО ТРАНСПОРТНОГО СРЕДСТВА И СПОСОБ ОПРЕДЕЛЕНИЯ ДИАМЕТРА КОЛЕСА РЕЛЬСОВОГО ТРАНСПОРТНОГО СРЕДСТВА 2016
  • Гнитько Ростислав Васильевич
  • Курганский Андрей Андреевич
  • Ляной Вадим Вадимович
  • Тильк Игорь Германович
RU2624358C1
СПОСОБ ИНЕРЦИАЛЬНЫХ ИЗМЕРЕНИЙ НЕРОВНОСТЕЙ РЕЛЬСОВОГО ПУТИ 2002
  • Боронахин А.М.
  • Гупалов В.И.
  • Мочалов А.В.
RU2242391C2
СПОСОБ ИЗМЕРЕНИЯ ГЕОМЕТРИИ РЕЛЬСОВОГО ПУТИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2003
  • Бондаренко И.В.
  • Великотный М.А.
  • Калюжный А.П.
  • Конев В.П.
  • Михайлов В.Е.
  • Рязанов А.Д.
  • Соломоник В.А.
RU2256575C1
УСТРОЙСТВО И СПОСОБ ДЛЯ РЕЛЬСОВОГО ТРАНСПОРТНОГО СРЕДСТВА 2009
  • Ляйтель Хольгер
  • Берендс Виктор
  • Гензеляйтер Курт
  • Шайбле Рольф-Штефан
RU2524805C2
Способ определения времени релаксации неравновесных возбуждений 1988
  • Кулик И.О.
  • Янсон И.К.
  • Балкашин О.П.
  • Пилипенко Ю.А.
  • Кулик И.И.
SU1581138A1
СПОСОБ РАДИАЛЬНОГО ВЫРАВНИВАНИЯ КОЛЕСНЫХ ПАР РЕЛЬСОВЫХ ТРАНСПОРТНЫХ СРЕДСТВ 2019
  • Науманн, Джон Оливер
  • Толен, Саша
  • Мюллер, Карл
RU2782388C1
УСТРОЙСТВО КОНТРОЛЯ ПРОСЛЕДОВАНИЯ ЖЕЛЕЗНОДОРОЖНОГО ПОДВИЖНОГО СОСТАВА 1999
  • Самодуров В.И.
  • Желобин В.Б.
  • Кухаренко Т.В.
RU2248898C2
СПОСОБ ИЗМЕРЕНИЙ ГОРИЗОНТАЛЬНЫХ НЕРОВНОСТЕЙ (РИХТОВКИ) И КРИВИЗНЫ В ПЛАНЕ РЕЛЬСОВЫХ НИТЕЙ 2004
  • Боронахин Александр Михайлович
  • Гупалов Валерий Иванович
  • Шалагина Екатерина Алексеевна
RU2276216C2
УСТРОЙСТВО УПРАВЛЕНИЯ ДЛЯ ЛИНЕЙНОГО СОЛЕНОИДА 2019
  • Токура, Такааки
  • Коно, Кацуми
  • Каигава, Масато
  • Мацубара, Масато
  • Мацунага, Хитоси
  • Хино, Акира
RU2719336C1

Реферат патента 2017 года СПОСОБ ОПРЕДЕЛЕНИЯ ДИАМЕТРА КОЛЕСА РЕЛЬСОВОГО ТРАНСПОРТНОГО СРЕДСТВА

Изобретение относится к области автоматики и телемеханики на железнодорожном транспорте для определения диаметра колеса. Способ включает использование датчика колеса и определение скорости прохода колеса, при этом датчик регистрации прохода колеса содержит по меньшей мере одну зону детектирования. Предварительно определяют аппроксимирующую функцию, заносят набор значений характеризующего параметра или совокупности характеризующих параметров аппроксимирующей функции. При проходе колеса в зоне детектирования в память датчика в режиме реального времени записывают значения отклика зоны детектирования. С учетом определенной фактической скорости функцию отклика преобразовывают к виду нормированной статической характеристики, определяют значение характеризующего параметра или значения совокупности характеризующих параметров аппроксимирующей функции, при которых преобразованная функция отклика с заданной точностью соответствует аппроксимирующей функции. По таблице соответствия определяют диаметр колеса рельсового транспортного средства. Достигается повышение точности определения диаметра колеса рельсового транспортного средства.

Формула изобретения RU 2 628 621 C1

Способ определения диаметра колеса рельсового транспортного средства, включающий использование датчика регистрации прохода колеса и определение фактической скорости прохода колеса, отличающийся тем, что датчик регистрации прохода колеса содержит по меньшей мере одну зону детектирования, предварительно определяют аппроксимирующую функцию, которой описывается отклик каждой зоны детектирования на проход колеса, и характеризующий параметр или совокупность характеризующих параметров аппроксимирующей функции, также предварительно в память датчика регистрации прохода колеса в виде таблицы соответствия заносят набор значений характеризующего параметра или совокупности характеризующих параметров аппроксимирующей функции, вычисленных по нормированным статическим характеристикам взаимодействия эталонных колес разного диаметра с зонами детектирования датчика, при этом в таблице соответствия каждому значению характеризующего параметра или каждой совокупности характеризующих параметров соответствует определенный диаметр, во время работы датчика при проходе колеса в каждой зоне детектирования в память датчика в режиме реального времени записывают значения отклика зоны детектирования в виде некоторой функции отклика, с учетом определенной фактической скорости функцию отклика преобразовывают к виду нормированной статической характеристики, определяют значение характеризующего параметра или значения совокупности характеризующих параметров аппроксимирующей функции, при которых преобразованная функция отклика с заданной точностью соответствует аппроксимирующей функции, по таблице соответствия определяют диаметр колеса рельсового транспортного средства.

Документы, цитированные в отчете о поиске Патент 2017 года RU2628621C1

СПОСОБ РЕГИСТРАЦИИ ПРОХОЖДЕНИЯ КОЛЕСНЫХ ПАР ПОДВИЖНОГО СОСТАВА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2013
  • Тильк Игорь Германович
  • Ляной Вадим Вадимович
  • Логинов Вадим Леонидович
  • Мелехин Геннадий Петрович
  • Юрков Сергей Александрович
RU2564553C2
СПОСОБ ФИКСАЦИИ ПРОСЛЕДОВАНИЯ КОЛЕСА ПОДВИЖНОГО СОСТАВА ПО УЧАСТКУ ПУТИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2006
  • Тильк Игорь Германович
  • Ляной Вадим Вадимович
  • Кривда Михаил Алексеевич
  • Сергеев Борис Сергеевич
RU2323120C1
ПУТЕВОЙ ДАТЧИК 2008
  • Тильк Игорь Германович
  • Ляной Вадим Вадимович
  • Кривда Михаил Александрович
  • Сергеев Борис Сергеевич
RU2372232C1
Способ непрерывного диагностирования технического состояния опорных подшипников первичного и вторичного валов коробки передач КАМАЗ в эксплуатации 2018
  • Мухаметдинов Эдуард Мухамадзакиевич
  • Кулаков Александр Тихонович
  • Кулаков Олег Александрович
  • Коваленко Сергей Юрьевич
  • Грибков Константин Владимирович
RU2685575C1

RU 2 628 621 C1

Авторы

Гнитько Ростислав Васильевич

Курганский Андрей Андреевич

Ляной Вадим Вадимович

Тильк Игорь Германович

Даты

2017-08-21Публикация

2016-09-05Подача