Предлагаемое изобретение относится к области гидрометаллургии цветных металлов, в том числе к гидрометаллургии меди.
В настоящее время для получения чистой меди в мировой практике все большие масштабы приобретает гидрометаллургический способ, заключающейся в том, что из медных руд, их концентратов и других промпродуктов выщелачивается медь и другие сопутствующие металлы: Ni, Zn, Fe, Pb, Ag и другие, то есть получают многокомпонентные медьсодержащие растворы.
Выщелачивание проводят действием на исходные материалы различных реагентов. В частности, используют раствор хлорида меди (II) и окислителя - хлора или кислорода, а также H2SO4. В результате получают хлоридный и Z-хлоридно-сульфатный или сульфатный многокомпонентный раствор.
Так, действием раствора CuCl2+Cl2 на медно-никелевые файнштейны получают хлоридно-сульфатный раствор, содержащий медь, никель, кобальт, железо. Для получения чистого электролита CuSO4 из этого раствора медь осаждают в форме Cu2S, осадок подвергают обжигу, а из огарка действием серной кислоты получают электролит CuSO4. Затем подвергают его электролизу с нерастворимым анодом и получают катодную медь (Цветные металлы, 2014, №9, с. 81-88).
Предложено получать растворы хлорида меди (II) - CuCl2 действием раствора CuCl+Cl2 на сульфидный медный концентрат. Полученный раствор перерабатывают на электролит CuSO4 путем экстракции в присутствии серной кислоты. Полученный раствор CuSO4 подвергают электролизу с нерастворимым анодом с получением катодной меди (Processing of Copper, 2013, Chili, р. 285-295).
Для получения электролита CuSO4 при переработке окисленной руды Удоканского месторождения предложено ее выщелачивание серной кислотой с последующей очисткой раствора экстракцией (Патент РФ 23397113 от 16.04.2007).
Недостатками экстракционных способов приготовления электролита CuSO4 для получения катодной меди электролизом с нерастворимым анодом являются:
- высокая стоимость реагентов - экстрагентов;
- использование горючего растворителя - керосина;
- узкие пределы кислотности растворов (рН=1,3-3,0), направляемых на экстракцию;
- большие объемы растворов в обороте;
- неполная очистка электролита CuSO4 от примесей - Ni, Со, Zn, Fe и др.
Предлагаемый способ основан на выделении меди из многокомпонентных растворов путем восстановления Cu(II)→Cu(I) и осаждении чистой соли CuCl. Известен ряд способов восстановления меди (II) до меди (I) действием на растворы различными восстановителями - Со, Н2, Cu и др. (Некрасов Б.В. Основы общей химии, т. 2, 1973, М., Химия, с. 688).
Наиболее близким к предлагаемому является способ восстановления меди (II) до меди (I) действием на растворы, содержащие ионы Cu+2 и Cl- металлической меди, что приводит к выделению соли CuCl за счет реакции:
Cu+2+2Cl-+Cu0=2CuCl↓
Но для осуществления этого способа необходимо иметь отдельное производство медного порошка.
Последний в промышленных масштабах получают электролизом раствора CuSO4 с нерастворимым анодом, что определяет высокую стоимость медного порошка. К тому же необходимо получать электролит CuSO4 и регенерировать его в процессе электролиза.
В предлагаемом изобретении, включающем технологию переработки многокомпонентных растворов от выщелачивания медьсодержащих промышленных продуктов - концентратов, штейнов, файнштейнов и других - на чистый электролит CuSO4 и его регенерацию в процессе электролиза с нерастворимым анодом, выполняют следующие последовательные операции:
1. В исходный раствор вводят порошок меди при t=20-50°С и перемешивают. При этом происходит осаждение чистой соли CuCl за счет реакции:
2. Соль CuCl отделают от раствора и обрабатывают ее водяным паром при t≈100°С, что вызывает ее гидролиз с образование оксида меди (I) и хлористого водорода по реакции:
Хлористый водород в форме соляной кислоты используют для выщелачивания исходного продукта.
3. Оксид меди (I) растворяют в серной кислоте и получают чистый электролит CuSO4 и медный порошок по реакции:
4. Электролит CuSO4 подвергают электролизу с нерастворимым анодом и получают катодную медь по электрохимической реакции:
5. В результате реакции (4) в электролите уменьшается содержание CuSO4 и увеличивается концентрация H2SO4. При достижении определенных концентраций CuSO4 и H2SO4 в электролите его необходимо регенерировать, то есть увеличить концентрацию CuSO4 и уменьшить концентрацию H2SO4.
Для регенерации электролита в него вносят соответствующее количество Cu2O. За счет реакции (3) достигают необходимое увеличение концентрации CuSO4 и уменьшение содержания H2SO4.
6. Порошок меди, образующийся при получении электролита CuSO4 и его регенерации по реакции (3), направляют на выделение соли CuCl из исходного раствора по реакции (1) с последующим проведением операций по пунктам 2, 3, 4, 5.
Для запуска описанной технологии необходимо первоначально использовать медный порошок, полученный по одной из известных технологий, в частности путем электролиза. Это позволяет достигнуть непрерывного процесса получения чистого электролита CuSO4 и его регенерации при электролизе с нерастворимым анодом и получением товарного продукта - катодной меди высокой чистоты.
Примеры использования предлагаемого способа.
Пример 1
Состав исходного раствора, г/л:
Cu - 63,5; Ni - 3,4; Fe - 1,5; - 72,3; - 20,7
К 100 мл исходного раствора добавляют 6,35 г порошка меди, полученного электрохимическим способом, и перемешивают смесь при 20°С в течение 30 минут. В результате реакции (1) выпадает осадок CuCl, который отделяют от раствора фильтрацией. Затем осадок CuCl помещают в трубчатую печь, через которую пропускают водяной пар при t=103°С в течение двух часов. В результате за счет протекания реакции (2) получают оксид меди (I) - Cu2O, который вносят в 100 мл раствора серной кислоты с концентрацией 120 г/л и перемешивают в течение 30 минут при t=21°С. За счет реакции (3) получают чистый раствор электролита CuSO4 с концентрацией меди 63,4 г/л и медный порошок массой 6,35 г.
Медный порошок отделяют от раствора и вносят в 100 мл исходного раствора. В результате по реакции (1) получают новый осадок CuCl, который перерабатывают на Cu2O по реакции (2), как указано выше.
Полученный ранее электролит CuSO4 подвергают электролизу с нерастворимым анодом. По мере изменения состава электролита согласно уравнению (4) его корректируют, добавляя полученный оксид меди (I) - Cu2O. Согласно уравнению (3) происходит регенерация электролита и выделение порошка меди, который используют для выделения CuCl из исходного электролита по реакции (1). Далее проводят операции в соответствии с реакциями (2, 3, 4).
Таких циклов было проведено четыре. В результате была получена катодная медь, которая по данным анализа содержала >99,99% Cu.
Пример 2
Состав исходного раствора, г/л:
Cu - 95,2; Ni - 56,1; Fe - 3,8; - 71,0; - 96,0
К 100 мл исходного раствора добавляют 9,52 г порошка меди, полученного электрохимическим способом, и перемешивают смесь при 20,5°С в течение 30 минут. В результате реакции (1) выпадает осадок CuCl, который отделяют от раствора фильтрацией. Затем осадок CuCl помещают в трубчатую печь, через которую пропускают водяной пар при t=100-102°С в течение двух часов. В результате за счет протекания реакции (2) получают оксид меди (I) - Cu2O, который вносят в 100 мл раствора H2SO4 с концентрацией серной кислоты 140 г/л и перемешивают в течение 30 минут при t=20,5°С. За счет реакции (3) получают чистый раствор электролита CuSO4 с концентрацией меди 95,1 г/л и 9,5 г медного порошка. Медный порошок отделяют от раствора и вносят в 100 мл исходного раствора. В результате по реакции (1) получают новый осадок CuCl, который перерабатывают на Cu2O по реакции (2), как описано в примере 1.
Полученный ранее электролит CuSO4 подвергают электролизу с нерастворимым анодом. По мере изменения состава электролита согласно уравнению (4) его корректируют, добавляя полученный оксид меди (I) - Cu2O. Согласно уравнению (3) происходит регенерация электролита и выделение порошка меди, который используют для выделения CuCl из исходного электролита по реакции (1). Далее проводят операции в соответствии с реакциями (2, 3, 4).
Таких циклов было проведено пять. В результате была получена катодная медь, которая по данным анализа содержала >99,99% Cu.
Таким образом, использование предлагаемого изобретения позволяет быстро и эффективно перерабатывать многокомпонентные хлоридные и хлоридно-сульфатные растворы, которые получают при выщелачивании медьсодержащих промпродуктов - концентратов, штейнов, файнштейнов и др., на чистый электролит CuSO4, регенерировать его в процессе электролиза с нерастворимым анодом без использования других реактивов и получать катодную медь высоких марок.
название | год | авторы | номер документа |
---|---|---|---|
Способ выделения оксида меди (I) CuO из многокомпонентных сульфатных растворов тяжелых цветных металлов | 2020 |
|
RU2744291C1 |
СПОСОБ ПОЛУЧЕНИЯ АЛМАЗОВ | 2011 |
|
RU2469952C1 |
СПОСОБ ПОЛУЧЕНИЯ ХЛОРИДА МЕДИ (I) CuCl | 2014 |
|
RU2567609C2 |
Способ селективного выделения обогащенных концентратов платиновых металлов из многокомпонентных растворов | 2021 |
|
RU2764778C1 |
Способ селективного выделения родия Rh, рутения Ru и иридия Ir из солянокислых растворов хлорокомплексов платины Pt(IV), палладия Pd(II), золота Au(III), серебра Ag(I), родия Rh(III), рутения Ru(IV) и иридия Ir(IV) | 2020 |
|
RU2742994C1 |
СПОСОБ УТИЛИЗАЦИИ КЕКОВ ОЧИСТКИ ПРОМЫВНЫХ ВОД ГАЛЬВАНОЦЕХОВ | 1993 |
|
RU2098498C1 |
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОЛИТНОГО НИКЕЛЯ | 2005 |
|
RU2303086C2 |
Способ извлечения платины из технической соли гексахлороплатината аммония | 2019 |
|
RU2711762C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА МЕТАЛЛА ЭЛЕКТРОЛИЗОМ | 2014 |
|
RU2553319C1 |
СПОСОБ ПЕРЕРАБОТКИ ВТОРИЧНОГО ЗОЛОТОСОДЕРЖАЩЕГО СЫРЬЯ В ЧИСТОЕ ЗОЛОТО (ВАРИАНТЫ) | 2001 |
|
RU2176279C1 |
Изобретение относится к гидрометаллургии меди. Способ переработки многокомпонентных хлоридных и хлоридно-сульфатных растворов для получения чистого электролита CuSO4 и для его регенерации после электролиза с нерастворимым анодом включает осаждение из исходного раствора чистой соли CuCl действием на него ранее полученным порошком меди с последующим гидролитическим разложением CuCl водяным паром при температуре, равной или более 100°C, с получением оксида меди (I) - Cu2O. Далее действием оксида меди на раствор серной кислоты получают чистый электролит CuSO4 и порошок меди. При этом образующийся в процессе порошок меди используют для выделения CuCl из исходного раствора. Техническими результатами предлагаемого способа являются быстрое и дешевое извлечение меди из многокомпонентных растворов в форме CuCl, простая и дешевая переработка ее на чистый электролит CuSO4 и его регенерация в процессе электролиза с нерастворимым анодом. 2 пр.
Способ переработки многокомпонентных хлоридных и хлоридно-сульфатных растворов c получением чистого электролита CuSO4 и его регенерацией после электролиза с нерастворимым анодом, включающий осаждение меди из исходного раствора в виде чистой соли CuCl воздействием на него ранее полученным порошком меди с последующим гидролитическим разложением CuCl водяным паром при температуре, равной или более 100°C, с получением оксида меди (I) - Cu2O, при воздействии которого на раствор серной кислоты получают чистый электролит CuSO4 и порошок меди, при этом образующийся в процессе порошок меди используют для выделения CuCl из исходного раствора.
СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОЙ РЕГЕНЕРАЦИИ МЕДИ ИЗ СЕРНОКИСЛЫХ ЭЛЕКТРОЛИТОВ | 1994 |
|
RU2075547C1 |
RU 2070589 С1, 20.12.1996 | |||
СПОСОБ ПЕРЕРАБОТКИ МЕДЬСОДЕРЖАЩИХ ПРОДУКТОВ | 2000 |
|
RU2178342C1 |
СПОСОБ ПОЛУЧЕНИЯ МЕДНОГО МЕТАЛЛИЧЕСКОГО ПОРОШКА, ОКСИДОВ МЕДИ И МЕДНОЙ ФОЛЬГИ | 1996 |
|
RU2134311C1 |
WO 9641027 А1, 19.12.1996 | |||
СПОСОБ И УСТРОЙСТВО ДЕМОНСТРАЦИИ ВИЗУАЛЬНОЙ ИНФОРМАЦИИ | 2003 |
|
RU2250515C2 |
US 5468353 A, 21.11.1995. |
Авторы
Даты
2017-08-23—Публикация
2015-10-29—Подача