Изобретение относится к электрохимическому способу получения борида молибдена и может быть использовано для получения мелкодисперсного порошка борида молибдена.
В настоящее время применение боридов переходных металлов развивается в двух направлениях, одним из которых является их использование в качестве покрытий (химико-термическая обработка), а другое относится к получению композиционных материалов методами порошковой металлургии.
Известен борокарбидный способ получения боридов молибдена. Проводится восстановление смеси окислов MoO3 и В2О3 углеродом или MoO3 - смесью карбида бора и сажи по реакциям:
MoO3+В2О3+6С=МоВ2+6СО,
2MoO3+В4С+5С=2МоВ2+6СО.
Смеси MoO3 с ВС4 и сажей нагревают в вакууме или атмосфере водорода при 1200-1300°С. Реакция протекает быстро за 0,5-1 час. В вакууме получают более чистые бориды. Для повышения производительности шихту брикетируют под давление 0,5-1 Т/см2.
Борокарбидный метод имеет недостатки, так как B2O3, содержащийся в шихте, частично летит, что затрудняет получение борида заданного состава и приводит к повышенному содержанию углерода в бориде [1].
Известен и другой способ синтеза боридов молибдена [2], заключающийся в восстановлении молибденового ангидрида или двуокиси MoO2 углеродом и карбидом бора по реакциям:
8MoO3+5В4С+19С=4Мо2В5+24СО,
8MoO3+5В4С+11С=4Мо2В5+16СО.
Процесс осуществляется в вакууме 10-1-10-2 мм рт.ст. при 1200-1500°С. Установлено, что высокая летучесть молибденового ангидрида подавляется высокой скоростью образования термодинамически прочного борида. Повышение температуры получения борида молибдена ведет к увеличению содержания углерода в продуктах реакции.
Наиболее близким является способ получения боридов молибдена элекролизом расплава NaCl - Na3AlF6 (1:1 мас.) - 0,5 мас.%, Na2MoO4 - 20 мас.%, B2O3 при температуре 900°С [3], отличающийся тем, что процесс получения целевого продукта в отличие от аналогов проводят электрохимическим синтезом и при более низкой температуре.
Недостатком прототипа является высокая температура процесса и возможность загрязнения целевого продукта другими металлами (алюминием).
Электрохимический синтез борида молибдена осуществляется в электролите состава KCl-NaCl-NaF-Na2MoO4-B2O3. Электролит готовят в аллундовом тигле объемом 100 мл в электропечи, нагретой до 750°С. Сначала расплавляется смесь хлоридов натрия и калия, затем добавляют NaF, Na2MoO4 и В2О3. После достижения температуры 750°С в расплав погружают молибденовый катод и графитовый анод. Продолжительность электролиза 1 час. Борид молибдена оседает в виде "груши" на катоде. После остывания осадок отмывают горячей водой.
Задачи изобретения - повышение чистоты продукта, в частности снижение загрязнения целевого продукта другими металлами (алюминием), и снижение температуры процесса.
Задача решается следующим образом.
Предлагается расплав для электрохимического синтеза борида молибдена, содержащий хлорид натрия, хлорид калия, фторид натрия, молибдат натрия и оксид бора со следующим соотношением компонентов, мас.%:
Электрохимический синтез борида молибдена при температуре 750°С проводился на основе расплава NaCl-KCl-NaF, содержащего в качестве источников молибдена Na2MoO4, источника бора - В2О3.
Для проведения электрохимического синтеза использовали в качестве контейнера аллундовый тигель, в качестве анода использовался графитовый стержень, в качестве катода - молибденовая пластина.
Электролит готовили расплавлением в электропечи смеси хлоридов натрия и калия, фторида натрия, молибдата натрия и оксида бора в графитовом тигле. По достижении 750°С в расплав погружают электроды. Электролиз осуществляется в открытых ваннах в потенциостатическом режиме при напряжении на ванне U=2,8 В при температуре 750°С.
После окончания электролиза катод с осажденным продуктом в виде «груши» тщательно отмывается горячей дистиллированной водой многократной декантацией для избавления от солевой фазы. Затем катодный осадок высушивается в сушильном шкафу.
Пример 1. Электрохимический синтез борида молибдена осуществляется в электролите состава, мас.%:
Электролит готовят в аллундовом тигле объемом 100 мл в электропечи, нагретой до 750°C. Сначала расплавляется смесь хлоридов натрия и калия, затем добавляют NaF, Na2MoO4 и В2О3. После достижения температуры 750°С в расплав погружают молибденовый катод и графитовый анод. Напряжение на ванне U=2,8 В. Продолжительность электролиза 1 час. Борид молибдена оседает в виде "груши" на катоде. После остывания осадок отмывают горячей водой.
Пример 2. Электрохимический синтез борида молибдена осуществляется в электролите состава, мас.%:
Электролит готовят в аллундовом тигле объемом 100 мл в электропечи, нагретой до 750°С. Сначала расплавляется смесь хлоридов натрия и калия, затем добавляют NaF, Na2MoO4 и В2Оз. После достижения температуры 750°С в расплав погружают молибденовый катод и графитовый анод. Напряжение на ванне U=2,8 В. Продолжительность электролиза 1 час. Борид молибдена оседает в виде "груши" на катоде. После остывания осадок отмывают горячей водой.
Пример 3. Электрохимический синтез борида молибдена осуществляется в электролите состава, мас.%:
Электролит готовят в аллундовом тигле объемом 100 мл в электропечи, нагретой до 750°С. Сначала расплавляется смесь хлоридов натрия и калия, затем добавляют NaF, Na2MoO4 и В2О3. После достижения температуры 750°С в расплав погружают молибденовый катод и графитовый анод. Напряжение на ванне U=2,8 В. Продолжительность электролиза 1 час. Борид молибдена оседает в виде "груши" на катоде. После остывания осадок отмывают горячей водой.
Литература
1. Beck W. Metal industry, 1955, v. 86, p.43.
2. L. Andrieux. Chim. et ind., 25, 1053.
3. Малышев В.В. Теоретические основы и практическая реализация технологий ВЭС силицидов и боридов хрома, молибдена и вольфрама в ионных расплавах // Теоретические основы химических технологий. - 2002. - Т. 36, №1. - С. 75-88.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения нанодисперсного изотопно-модифицированного борида молибдена | 2023 |
|
RU2811828C1 |
ЭЛЕКТРОЛИТ ДЛЯ НАНЕСЕНИЯ ПОКРЫТИЙ НА ЭЛЕКТРОПРОВОДЯЩИЕ И НЕЭЛЕКТРОПРОВОДЯЩИЕ МАТЕРИАЛЫ | 2010 |
|
RU2458189C1 |
Электролитический способ получения ультрадисперсного порошка двойного борида церия и кобальта | 2018 |
|
RU2695346C1 |
СПОСОБ ЭЛЕКТРОЛИЗА КРИОЛИТОГЛИНОЗЕМНЫХ РАСПЛАВОВ С ПРИМЕНЕНИЕМ ТВЕРДЫХ КАТОДОВ | 2019 |
|
RU2716569C1 |
ЭЛЕКТРОЛИТИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПОРОШКА ГЕКСАБОРИДА ЦЕРИЯ | 2013 |
|
RU2540277C1 |
Электрохимический способ получения порошков гексаборидов стронция и бария | 2017 |
|
RU2658835C1 |
ЭЛЕКТРОЛИТИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ ГЕКСАБОРИДА ПРАЗЕОДИМА | 2008 |
|
RU2393115C2 |
Электрохимический способ получения микродисперсных порошков гексаборидов металлов лантаноидной группы | 2019 |
|
RU2722753C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНЫХ ПОРОШКОВ ДВОЙНЫХ КАРБИДОВ ВОЛЬФРАМА И МОЛИБДЕНА | 2010 |
|
RU2459015C2 |
СПОСОБ ПОЛУЧЕНИЯ ЛИГАТУРНОГО СПЛАВА АЛЮМИНИЙ-БОР | 2015 |
|
RU2610182C2 |
Изобретение относится к электрохимическому синтезу борида молибдена, включающему электролиз расплава, содержащего хлорид калия, молибдат натрия и оксид бора, хлорид натрия. Способ характеризуется тем, что дополнительно вводят фторид натрия, а также для повышения чистоты и снижения температуры электролиз ведут при следующем соотношении компонентов, мас.%: хлорид калия 15,60, фторид натрия 7,84, молибдат натрия 1,00, оксид бора от 1,00 до 3,0, хлорид натрия - остальное, при температуре 750°С и напряжении на ванне U=2,8 В. Использование предлагаемого способа позволяет повысить чистоту продукта, в частности снизить загрязнение целевого продукта другими металлами (алюминием), и снизить температуру процесса. 3 пр.
Способ электрохимического синтеза борида молибдена, включающий электролиз расплава, содержащего хлорид калия, молибдат натрия и оксид бора, хлорид натрия, отличающийся тем, что дополнительно вводят фторид натрия, а также для повышения чистоты и снижения температуры электролиз ведут при следующем соотношении компонентов, мас.%:
при температуре 750°С и напряжении на ванне U=2,8 В.
Малышев В.В., Теоретические основы и практическая реализация технологий ВЭС силицидов и боридов хрома, молибдена и вольфрама в ионных расплавах, Теоретические основы химических технологий, 2002, т | |||
Коридорная многокамерная вагонеточная углевыжигательная печь | 1921 |
|
SU36A1 |
Фальцовая черепица | 0 |
|
SU75A1 |
CN 102530974 A, 04.07.2012 | |||
УСТРОЙСТВО для УПАКОВКИ ПРЕДМЕТОВ В КАРТОННЫЕКОРОБКИ | 0 |
|
SU206380A1 |
Авторы
Даты
2017-08-25—Публикация
2015-09-07—Подача