Керамическая масса для изготовления стеновых облицовочных изделий Российский патент 2017 года по МПК C04B33/00 C04B33/132 

Описание патента на изобретение RU2631447C1

Изобретение относится к области утилизации гальванических шламов в производстве стеновых строительных материалов из малопластичных глин и может быть использовано при изготовлении изделий для облицовки фасадов и внутренних стен.

Известен состав, включающий отходы гальванического производства в виде добавки в сырьевую смесь в количестве 1-2% [1]. Данный состав позволяет снизить температуру обжига с 1000 до 920°C, при этом прочность на сжатие изменяется, а морозостойкость повышается. Так же известна керамическая масса, состоящая из пластичной глины (68-80 вес.%), отощителя (15-30 вес.%) и отходов электрохимического производства (2-5 вес.%) [2].

Недостаток известных составов заключается в том, что введение отходов гальванического производства, позволяющее снизить температуру обжига, не давало повышения прочности изделия на сжатие.

Наиболее близкой по технической сущности к предлагаемой является керамическая масса с добавкой гальванического шлама [3]. С целью снижения температуры обжига, повышения прочности на сжатие и снижения вымываемости тяжелых металлов из обожженных изделий в состав массы дополнительно вводят стеклобой и борную кислоту.

Недостатком данного состава для стеновой керамики является сравнительно невысокая прочность на сжатие и недостаточное для решения проблемы утилизации количество вводимого гальванического шлама. Кроме того, применение стеклобоя подразумевает его предварительную подготовку, включающую сортировку, помол и просушку, что повышает энергоемкость производственного цикла. Также следует учесть, что данная добавка не отличается постоянством состава.

Отмеченные недостатки могут быть устранены путем замены стеклобоя на диоксид титана, что и предлагается в данном изобретении.

Техническими задачами, на решение которых направлено предлагаемое изобретение, являются повышение прочности на сжатии и морозостойкости, снижение водопоглощения и теплопроводности керамики на основе глин низкой пластичности при одновременной утилизации гальванического шлама в производстве экологически безопасного материала.

Поставленные задачи решаются за счет применения состава, включающего малопластичную глину, гальванический шлам, образующийся при реагентной очистке сточных вод гальванического цеха гидроксидом кальция, содержащий, мас.%: Zn(OH)2 - 11,3; Ni(OH)2 - 2,6; Cu(OH)2 - 2,4; Cr(OH)3 - 9,3; CaCO3 - 40,3; Ca(OH)2 - 16,5; SiO2 - 7,0, борную кислоту и дополнительно содержащего в своем составе диоксид титана при следующем соотношении компонентов, мас.%:

Малопластичная глина 80,0 Гальванический шлам, образующийся при реагентной очистке сточных вод гальванического цеха гидроксидом кальция 5,0 Диоксид титана 10,0 Борная кислота 5,0

В данном составе предусматривается применение глины Суворотского месторождения Владимирской области, содержащая в своем составе следующие соединения (в мас.%): SiO2 - 77,2; CaO⋅Al2O3⋅2SiO2 - 5,3; Al2O3⋅2SiO2⋅H2O - 7,0; K2O⋅Al2O3⋅6SiO2 - 5,9; Na2O⋅Al2O3⋅SiO2 - 4,6. Данная глина обладает числом пластичности 5,2 и относится к малопластичным (по ГОСТ 9169-75).

Перед использованием глина высушивается при температуре 130°C, измельчается в шаровой мельнице с отбором фракции менее 0,63 мм, гальванический шлам также просушивается при температуре 130°C и подвергается помолу в шаровой мельнице до степени перетира не более 40 мкм (по ГОСТ 6589-74).

Использование гальванического шлама подобного состава будет способствовать интенсивному выделению углекислого газа при обжиге при температурах около 900°C за счет разложения карбоната кальция. Это будет способствовать порообразованию и снижению теплопроводности готовых изделий. Однако это одновременно понизит прочность и морозостойкость керамики и приведет к росту водопоглощения.

В связи с этим в состав керамики вводится диоксид титана марки Р-02 (ГОСТ 9808-84), который хорошо взаимодействует с кремнеземом и щелочными оксидами и при температурах свыше 1250°C образует стекловидную фазу и приводит к самоглазурованию изделий. При этом открытые поры переходят в закрытые, снижая водопоглощение и повышая морозостойкость. Образование стекловидной фазы также способствует обезвреживанию тяжелых металлов, так как с одной стороны часть из них участвует в реакциях с образованием титанатов, составляющих стекловидную фазу, а с другой стороны стекловидная фаза затрудняет миграцию остальной их части в окружающую среду.

Для снижения температуры синтеза титанатов за счет повышения количества стекловидной фазы, образующейся при обжиге керамики, в состав вводится борная кислота марки В 2-го сорта (ГОСТ 18704-78). Кроме того, повышение количества образующейся стекловидной фазы позволяет связать частицы керамики между собой в прочную структуру, что способствует уплотнению материла и дополнительно затрудняет миграцию тяжелых металлов в окружающую среду.

Кроме борной кислоты температуру синтеза титанатов снижают гидроксиды и карбонат кальция, содержащиеся в гальваническом шламе и образующие после разложения активные оксиды. Они же приводят к формированию мелкодисперсной структуры обожженной керамики.

Выбор содержания компонентов в шихте также направлен на достижение поставленных технических задач.

В связи с необходимостью получения экологически безопасного материала количество вводимого гальванического шлама было ограничено 5 мас.%. Кроме того, при высоком содержании гальванического шлама в шихте при обжиге возникает высокое внутреннее давление, приводящее к образованию трещин в объеме материала и нарушению правильности формы изделий. Более низкое содержание не позволяет достичь пористости, достаточной для снижения теплопроводности, и утилизировать максимально возможное количество гальванического шлама.

При введении диоксида титана в количестве меньше 5 мас.% не происходит самоглазурования изделий и их физико-механические свойства меняются незначительно в связи с малым количеством образующихся титанатов. Введение свыше 10 мас.% диоксида титана практически не приводит к дальнейшему повышению прочности, но приводит к потере формы изделиями и повышает себестоимость производства.

Введение менее 5 мас.% борной кислоты недостаточно для снижения температуры синтеза титанатов, а введение свыше 5 мас.% также приводит к избытку стекловидной фазы и как следствие к потере формы изделиями, а также снижению экологической безопасности, что связано с токсичностью самой борной кислоты. Также повышает себестоимость производства.

Обоснованность и преимущества заявляемого изобретения основаны на измерении физико-механических и эксплуатационных показателей с различным содержанием гальванического шлама (от 1 до 10 мас.%), диоксида титана (от 1 до 15 мас.%) борной кислоты (от 1 до 10 мас.%).

Предпочтительна реализация заявляемого изобретения по следующей технологии: предварительно измельченные и высушенные глина и гальванический шлам, а также диоксид титана стандартной тонкости помола и борная кислота тщательно перемешиваются в сухом состоянии соответствии с заданной рецептурой. Полученная смесь дополнительно перемешивается с добавлением 8 мас.% воды и из готовой шихты получают сырец при давлении прессования 15 МПа. Затем, минуя стадию обжига, сырец нагревается до 1050°C при скорости нагрева 5°C/мин и выдерживается при максимальной температуре в течение получаса.

Заявляемое изобретение иллюстрируется следующими примерами:

1. К 80 мас.% глины добавляют 1 мас.% гальванического шлама, 2,5 мас.% диоксида титана и 1 мас.% борной кислоты, перемешивают и получают материал по указанной технологии.

2. К 89 мас.% глины добавляют 7,5 мас.% гальванического шлама, 1 мас.% диоксида титана и 2,5 мас.% борной кислоты, перемешивают и получают материал по указанной технологии.

3. К 85 мас.% глины добавляют 5 мас.% гальванического шлама, 5 мас.% борной кислоты и 5 мас.% диоксида титана, перемешивают и получают материал по указанной технологии.

4. К 80 мас.% глины добавляют 5 мас.% гальванического шлама, 10 мас.% диоксида титана и 5 мас.% борной кислоты, перемешивают и получают материал по указанной технологии.

5. К 75 мас.% глины добавляют 10 мас.% гальванического шлама, 5 мас.% диоксида титана и 10 мас.% борной кислоты, перемешивают и получают материал по указанной технологии.

Свойства материалов, полученных с использованием известного и предлагаемого составов, приведены в таблице 1

Источники информации

1. О.И. Никитина, В.И. Никитин. Использование добавок осадка гальваностоков в производстве кирпича // Промышленность строительных материалов. Экспресс-информация. Серия 4. Вып. 9. - М.: ВНИИЭСМ, 1988. С. 2-3.

2. Авторское свидетельство СССР 922098, кл. С04В 33/00, 1982.

3. Патент на изобретение №2200721, кл. С04В 33/00, 2003.

Похожие патенты RU2631447C1

название год авторы номер документа
Шихта для изготовления термически и химически стойких керамических изделий 2018
  • Петровская Ксения Александровна
  • Петрина Дарья Евгеньевна
  • Березовская Александра Владленовна
  • Пикалов Евгений Сергеевич
  • Селиванов Олег Григорьевич
RU2711215C1
Керамическая масса для изготовления фасадных изделий 2018
  • Виткалова Ирина Андреевна
  • Торлова Анастасия Сергеевна
  • Пикалов Евгений Сергеевич
  • Селиванов Олег Григорьевич
RU2706285C1
Шихта для изготовления кислотоупорных керамических изделий 2016
  • Виткалова Ирина Андреевна
  • Торлова Анастасия Сергеевна
  • Пикалов Евгений Сергеевич
  • Селиванов Олег Григорьевич
  • Чухланов Владимир Юрьевич
RU2638596C1
Керамическая масса для изготовления фасадных плиток 2017
  • Шахова Валерия Николаевна
  • Пикалов Евгений Сергеевич
  • Селиванов Олег Григорьевич
  • Чухланов Владимир Юрьевич
RU2672685C1
Керамическая масса для изготовления фасадной облицовочной и теплоизоляционной керамики 2018
  • Торлова Анастасия Сергеевна
  • Виткалова Ирина Андреевна
  • Пикалов Евгений Сергеевич
  • Селиванов Олег Григорьевич
  • Чухланов Владимир Юрьевич
RU2698368C1
Керамическая смесь для изготовления строительных изделий 2018
  • Колосова Анастасия Сергеевна
  • Сокольская Мария Константиновна
  • Пикалов Евгений Сергеевич
  • Селиванов Олег Григорьевич
RU2698369C1
Керамическая масса для изготовления облицовочных керамических изделий 2018
  • Шахова Валерия Николаевна
  • Пикалов Евгений Сергеевич
  • Селиванов Олег Григорьевич
  • Чухланов Владимир Юрьевич
RU2685581C1
Полимерная электроизоляционная композиция пониженной горючести 2018
  • Чухланов Владимир Юрьевич
  • Селиванов Олег Григорьевич
  • Ильина Марина Евгеньевна
  • Чухланова Наталья Владимировна
RU2697565C1
Шихта для изготовления термостойких керамических изделий 2017
  • Торлова Анастасия Сергеевна
  • Виткалова Ирина Андреевна
  • Пикалов Евгений Сергеевич
  • Селиванов Олег Григорьевич
  • Чухланов Владимир Юрьевич
RU2657878C1
Композиция для теплоизоляционного огнестойкого покрытия 2017
  • Чухланов Владимир Юрьевич
  • Селиванов Олег Григорьевич
  • Чухланова Наталья Владимировна
RU2657507C1

Реферат патента 2017 года Керамическая масса для изготовления стеновых облицовочных изделий

Изобретение относится к области утилизации гальванических шламов в производстве стеновых строительных материалов из малопластичных глин и может быть использовано при изготовлении изделий для облицовки фасадов и внутренних стен. Технический результат: повышение прочности на сжатие и морозостойкости, снижение водопоглощения и теплопроводности керамики на основе глин, в т.ч. малопластичных, утилизация гальванического шлама с получением экологически безопасного материала. Указанный технический результат достигается за счет введения в керамическую массу, включающую глину, гальванический шлам, образующийся при реагентной очистке сточных вод гальванического цеха гидроксидом кальция, содержащий, мас.%: Zn(OH)2 - 11,3; Ni(OH)2 - 2,6; Cu(OH)2 - 2,4; Cr(OH)3 - 9,3; CaOC3 - 40,3; Са(ОН)2 - 16,5; SiO2 - 7,0, и борную кислоту, дополнительно диоксида титана при следующем соотношении компонентов, мас.%: глина - 80,0; гальванический шлам - 5,0; диоксид титана - 10,0; борная кислота - 5,0. 1 табл.

Формула изобретения RU 2 631 447 C1

Керамическая масса для изготовления стеновых облицовочных изделий, включающая глину, гальванический шлам и борную кислоту, отличающаяся тем, что она содержит гальванический шлам, образующийся при реагентной очистке сточных вод гальванического цеха гидроксидом кальция, содержащий, мас.%: Zn(OH)2 - 11,3; Ni(OH)2 - 2,6; Cu(OH)2 - 2,4; Cr(OH)3 - 9,3; CaCO3 - 40,3; Са(ОН)2 - 16,5; SiO2 - 7,0, что позволяет применять малопластичные глины, и дополнительно содержит в своем составе диоксид титана при следующем соотношении компонентов, мас.%:

Малопластичная глина 80,0 Гальванический шлам, образующийся при реагентной очистке сточных вод гальванического цеха гидроксидом кальция 5,0 Диоксид титана 10,0 Борная кислота 5,0

Документы, цитированные в отчете о поиске Патент 2017 года RU2631447C1

КЕРАМИЧЕСКАЯ МАССА ДЛЯ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ СТЕНОВОЙ КЕРАМИКИ 2000
  • Кузнецов Ю.С.
  • Баранова Е.В.
  • Камшилов В.Г.
  • Калашников В.И.
  • Гущин В.А.
RU2200721C2
Способ и приспособление для нагревания хлебопекарных камер 1923
  • Иссерлис И.Л.
SU2003A1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОРИСТЫХ КЕРАМИЧЕСКИХ СТЕНОВЫХ ИЗДЕЛИЙ 2010
  • Габидуллин Махмуд Гарифович
  • Рахимов Равиль Зуфарович
  • Шангараев Арслан Ягфарович
  • Миндубаев Алмаз Альбертович
  • Габидуллин Булат Махмудович
  • Хисамиев Дамир Рашитович
RU2425817C1
Способ упрочнения оптических элементов 1979
  • Стрежнев Степан Александрович
  • Функ Лидия Антоновна
  • Хайбуллин Ильдус Бариевич
  • Зарипов Максут Мухамедзянович
  • Файзрахманов Ильдар Абдулкабирович
  • Штырков Евгений Иванович
SU922091A1
Аппарат для хранения и выдачи железнодорожных билетов 1925
  • Короваев Н.Е.
SU12106A1
ГИДРОПРИВОД МЕХАНИЗМА ПЕРЕМЕЩЕНИЯДЕРЕВЬЕВ 1972
SU426813A1

RU 2 631 447 C1

Авторы

Маркова Александра Александровна

Пикалов Евгений Сергеевич

Селиванов Олег Григорьевич

Чухланов Владимир Юрьевич

Даты

2017-09-22Публикация

2016-09-01Подача