СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКА ОКСИНИТРИДА АЛЮМИНИЯ Российский патент 2018 года по МПК C04B35/581 C01B21/72 B82Y30/00 B22F9/16 

Описание патента на изобретение RU2647075C1

Изобретение относится к области порошковой металлургии, в частности получению порошков для создания высокопрочной прозрачной керамики на основу оксинитрида алюминия (ОНА). Уникальное сочетание оптических, диэлектрических и механических свойств такой керамики представляет значительный интерес к ее использованию в различных технических приложениях.

К настоящему времени для получения порошков ОНА используются преимущественно два подхода - твердофазная реакция оксида алюминия с нитридом алюминия и карботермическое восстановление-азотирование оксида алюминия [Corbin N.D. "AluminumOxynitrideSpinel: AReview." Journal of the European Ceramic Society, vol. 5, pp. 143-154,1989; Xidong W., Fuming W., Wenchao L. Synthesis, microstructures and properties of γ-aluminum oxynitride. Materials Science and Engineering: A. 2003. v. 342. №1-2. pp. 245-250; Грибченкова Н.А., Береснев Э.Н., Сморчков К.Г. и др. Синтез и термические свойства "АЛОНА". Журнал неорганической химии. 2015. т. 60. №9. с. 1247]. Указанные подходы реализуются с использованием различных методов нагрева, условий проведения процессов и подготовки используемых реагентов.

Твердофазная реакция взаимодействия нитрида и оксида алюминия проводится при температуре выше 1700°C в течение нескольких часов, что определяет основные недостатки этого подхода - большое время процесса, высокие затраты энергии и использование дорогостоящего сырья - нитрида алюминия [например, патент США №5688730, 1997 г.].

Процесс карботермического восстановления-азотирования оксида алюминия также проводится при высоких температурах 1650-1850°C [например, патент США №8211356, 2012 г]. К недостаткам этого подхода также относятся большое время процесса и высокие затраты энергии, кроме того, имеются технические трудности получения целевого продукта заданного состава, не содержащего примесей.

Наиболее близким к заявляемому изобретению является процесс получения порошка ОНА, представленный в патенте [Patent US 6955798 В2, 2005]. Способ предусматривает использование исходных порошков алюминия и гамма-формы оксида алюминия, которые подвергаются размолу в течение времени, обеспечивающего образование смеси твердого раствора азота в алюминии и оксида алюминия. Далее проводится нагрев смеси в азотсодержащем газе в течение времени и при температуре, достаточных для образования ОНА.

Недостатком процесса является низкая скорость - время размола составляет от 9 часов, кроме того, способ не позволяет получать порошки с высокой дисперсностью (ультра- и нанодисперсные).

Задача, на решение которой направлено настоящее изобретение, заключается в создании высокоинтенсивного способа получения порошка оксинитрида алюминия в виде нанодисперсного порошка.

Техническим результатом изобретения является получение целевого продукта - ОНА - в потоке термической плазмы в виде нанопорошка, состоящего из частиц с размерами менее 100 нм.

Технический результат достигается тем, что в способе получения нанопорошка оксинитрида алюминия тонкодисперсный порошок алюминия вводится в поток термической плазмы, в котором осуществляется взаимодействие паров алюминия с аммиаком в присутствии кислорода в количестве, отвечающем атомному соотношению элементов 1,.16<O/Al<1,24.

Применение плазменного нагрева обеспечивает проведение синтеза ОНА в газовой фазе, что на порядки снижает характерное время процесса по сравнению с существующими способами получения ОНА в результате твердофазных реакций, а также обеспечивает получение целевого продукта в виде нанопорошка при конденсации из газовой фазы. Плазмообразующим газом может быть азот и его смеси с инертными газами, а также водородом. В составе плазмообразующего газа не допускается присутствие свободного или химически связанного кислорода. Алюминий используется в виде тонкодисперсного порошка для обеспечения его полного испарения в потоке плазмы. Аммиак вводится в высокотемпературный поток в количестве, значительно превышающем стехиометрически необходимое для образования ОНА, в то время как количество вводимого кислорода должно удовлетворять атомному соотношению элементов 1,16<O/Al<1,24. Граничные значения этого соотношения соответствуют области гомогенности ОНА(AlN)x(Al2O3)1-x, где 0,3<x<0,37. Наряду с аммиаком и кислородом в газовой смеси могут присутствовать азот, что позволяет использовать воздух как кислородсодержащий газ. Вводимая в высокотемпературный поток, содержащий пары алюминия, смесь газов должна обеспечивать не только протекание химических реакций формирования частиц ОНА при конденсации из газовой фазы, но и определять скорость снижения температуры потока и ее конечное значение и тем самым управлять размером получаемых частиц. Это может быть достигнуто изменением расхода вводимых газов при соблюдении указанных выше требуемых условий - избыток аммиака и диапазон допустимых значений соотношения O/Al. Выполненные к настоящему времени обширные исследования синтеза большого числа неорганических соединений по схеме ввода в плазменный поток холодных газов свидетельствуют о том, что при этом обеспечивается получение целевого продукта в виде нанопорошков с размером частиц менее 100 нм.

Отличительной особенностью и преимуществом предложенного способа является проведение синтеза ОНА из газовой фазы при взаимодействии паров алюминия, присутствующих в потоке термической плазмы, со смесью, в которой присутствуют аммиак и кислород, при соблюдении атомного соотношения элементов 1,16<O/Al<1,24. Способ обеспечивает протекание синтеза целевого продукта за времена порядка долей секунды и получение нанопорошка ОНА.

Предлагаемый способ реализуется следующим образом. В электроразрядном генераторе термической плазмы происходит нагрев подаваемых газов при их прохождении через дуговой, высокочастотный, сверхвысокочастотный или комбинированный разряд. В полученный поток термической плазмы вводится порошок алюминия с размером частиц не более 30 мкм, чтобы обеспечить полное испарение алюминия. Для подачи порошка используется транспортирующий газ, в качестве которого могут быть использованы азот, инертные газы или смеси указанных газов. На расстоянии от сечения ввода алюминия, обеспечивающем полное испарение частиц, в высокотемпературный поток вводится смесь аммиака и кислорода, причем количество аммиака значительно превышает стехиометрически необходимое по реакции образования ОНА, в то время как количество кислорода удовлетворяет атомному соотношению элементов 1,16<O/Al<1,24. Наряду с аммиаком и кислородом в газовой смеси могут присутствовать азот, что позволяет использовать воздух как кислородсодержащий газ, также в составе смеси могут присутствовать инертные газы. В результате химических реакций взаимодействия продуктов диссоциации аммиака, кислорода и паров алюминия при снижении температуры потока за счет вдува холодных газов происходит формирование наноразмерных частиц ОНА. Далее газодисперсный поток охлаждается в теплообменном устройстве и поступает на фильтр, где происходит выделение порошка из газового потока.

Реализация способа представлена следующим примером.

Пример

В поток термической плазмы, получаемой при нагреве в электродуговом плазменном генераторе смеси азота (97 объемных %) и водорода (3 объемных %) с суммарным расходом 1.5 м3/ч (норм. условия), вводится порошок алюминия с расходом 0.12 кг/ч с использованием в качестве транспортирующего газа азота с расходом 0.5 м3/ч (норм. условия). Среднемассовая энтальпия плазменной струи на выходе из плазменного генератора составляет 7.4 кВтч/нм3.

Ниже по потоку вводится смесь аммиака (25 объемных %), кислорода (1 объемный %) и азота (74 объемных %) с расходом 6 м3/ч (норм. условия). Атомное соотношение элементов O/Al для указанных расходов составляет 1,21, а соотношение Nаммиак/Alоставляет 15,7.

Полученный нанопорошок по результатам рентгенофазового анализа является γ-оксинитридом алюминия (рис. 1), удельная поверхность порошка составляет 71 м2/г, что соответствует нанодиапазону размеров частиц.

Похожие патенты RU2647075C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКОВ СИСТЕМ ЭЛЕМЕНТ-УГЛЕРОД 2010
  • Алексеев Николай Васильевич
  • Корнев Сергей Александрович
  • Самохин Андрей Владимирович
  • Цветков Юрий Владимирович
RU2434807C1
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПОРОШКА МЕТАЛЛА 2011
  • Новиков Александр Николаевич
RU2489232C1
СПОСОБ ПОЛУЧЕНИЯ КАРБИДОВ ЭЛЕМЕНТОВ И КОМПОЗИЦИЙ ЭЛЕМЕНТ-УГЛЕРОД 2015
  • Алексеев Николай Васильевич
  • Самохин Андрей Владимирович
  • Кирпичев Дмитрий Евгеньевич
  • Цветков Юрий Владимирович
  • Шиман Михаил Викторович
RU2616058C2
Способ получения тонкодисперсных многокомпонентных порошков на основе нитрида алюминия и соединений редкоземельных элементов 1989
  • Грабис Янис Петрович
  • Убеле Илзе Петровна
  • Кузенкова Майя Александровна
  • Миллер Талис Никласович
  • Стафецкий Леонид Петрович
  • Циелен Улдис Албертович
  • Фесенко Игорь Петрович
SU1675201A1
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ НА ОСНОВЕ КАРБИДА ВОЛЬФРАМА 2007
  • Благовещенский Юрий Вячеславович
  • Алексеев Николай Васильевич
  • Самохин Андрей Владимирович
  • Мельник Юрий Иванович
  • Цветков Юрий Владимирович
  • Корнев Сергей Александрович
RU2349424C1
СФЕРИЧЕСКИЙ ПОРОШОК ПСЕВДОСПЛАВА НА ОСНОВЕ ВОЛЬФРАМА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2019
  • Самохин Андрей Владимирович
  • Фадеев Андрей Андреевич
  • Алексеев Николай Васильевич
  • Цветков Юрий Владимирович
RU2707455C1
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПОРОШКА НИТРИДА АЛЮМИНИЯ 2012
  • Новиков Александр Николаевич
RU2494041C1
СПОСОБ ПОЛУЧЕНИЯ СУБМИКРОННЫХ И НАНОЧАСТИЦ АЛЮМИНИЯ, ИМЕЮЩИХ ПЛОТНОЕ ДИЭЛЕКТРИЧЕСКОЕ ПОКРЫТИЕ 2008
  • Березкина Надежда Георгиевна
  • Жигач Алексей Николаевич
  • Ларичев Михаил Николаевич
  • Лейпунский Илья Овсеевич
  • Стоенко Наум Иосифович
RU2397046C2
СПОСОБЫ ПРОИЗВОДСТВА ДИСПЕРСИИ НАНОМАТЕРИАЛОВ И ПРОДУКТОВ НА ЕЕ ОСНОВЕ 2006
  • Ядав Тапеш
RU2398621C2
Кремнийсодержащий активный материал для отрицательного электрода и способ его получения 2019
  • Левченко Алексей Владимирович
  • Евщик Елизавета Юрьевна
  • Берестенко Виктор Иванович
  • Добровольский Юрий Анатольевич
  • Корчун Андрей Викторович
RU2744449C1

Иллюстрации к изобретению RU 2 647 075 C1

Реферат патента 2018 года СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКА ОКСИНИТРИДА АЛЮМИНИЯ

Изобретение относится к получению нанопорошка оксинитрида алюминия. Тонкодисперсный порошок алюминия вводят в поток термической плазмы, в котором осуществляют взаимодействие паров алюминия с аммиаком в присутствии кислорода в количестве, отвечающем атомному соотношению элементов 1,16<O/Al<1,24. Обеспечивается получение порошка с размером частиц менее 100 нм. 1 ил., 1 пр.

Формула изобретения RU 2 647 075 C1

Способ получения нанопорошка оксинитрида алюминия, отличающийся тем, что тонкодисперсный порошок алюминия вводят в поток термической плазмы, в котором осуществляют взаимодействие паров алюминия с аммиаком в присутствии кислорода в количестве, отвечающем атомному соотношению элементов 1,16<O/Al<1,24.

Документы, цитированные в отчете о поиске Патент 2018 года RU2647075C1

JP 11268910 A, 05.10.1999
CN 103553628 A, 05.02.2014
US 5688730 A1, 18.11.1997
US 8211356 B1, 03.07.2012
СПОСОБ ПОЛУЧЕНИЯ ШИХТЫ ОКСИНИТРИДА АЛЮМИНИЯ 1999
  • Громов А.А.
  • Ильин А.П.
RU2171793C2
СПОСОБ ПОЛУЧЕНИЯ ЛИТОГО ОКСИНИТРИДА АЛЮМИНИЯ В РЕЖИМЕ ГОРЕНИЯ 2008
  • Горшков Владимир Алексеевич
  • Юхвид Владимир Исаакович
  • Тарасов Алексей Геннадьевич
RU2370472C1

RU 2 647 075 C1

Авторы

Самохин Андрей Владимирович

Асташов Алексей Григорьевич

Алексеев Николай Васильевич

Цветков Юрий Владимирович

Даты

2018-03-13Публикация

2016-06-02Подача