Способ изготовления чувствительного элемента акселерометра Российский патент 2018 года по МПК H01L21/308 

Описание патента на изобретение RU2656109C1

Изобретение может быть использовано при создании и изготовлении микромеханических устройств, содержащих упругие деформируемые исполнительные элементы методом химического травления с использованием масок.

Из уровня техники известны способы изготовления маятникового чувствительного элемента акселерометра (RU 2333137C1, 10.08.2008) (1), в которых формируют объемную структуру чувствительного элемента методом поэтапного травления пластины n-типа с ориентацией (100), включающий первичную химическую обработку пластины, нанесение на пластину маски, устойчивой к анизотропному травлению, последующее анизотропное травление пластины и разделение на отдельные элементы.

Недостатком указанного способа (1) является то, что при анизотропном травлении на получаемом чувствительном элементе образуются острые кромки, которые являются концентраторами механических напряжений.

Наиболее близким аналогом заявленного способа может быть выбран способ изготовления маятникового чувствительного элемента для акселерометра (RU 2539767C1, 27.01.2015) (2) методом поэтапного травления кремниевой пластины n-типа с ориентацией (100), включающий первичную химическую обработку пластины, многократное, последовательное нанесение на пластину маски, устойчивой к травлению, последующее травление пластины и разделение на отдельные элементы.

Наиболее близкий аналог (2) также основан на применении многократного анизотропного травления, который приводит к образованию острых кромок на получаемом чувствительном элементе, являющихся концентраторами механических напряжений.

Техническим результатом заявленного способа является увеличение производительности за счёт использования группового техпроцесса и повышение качества получаемых деталей за счет получения закругленных, неострых кромок чувствительного элемента, в частности кромок торсиона.

Указанный технический результат достигается за счет создания способа изготовления чувствительного элемента акселерометра, который основан на формировании групповым методом объемных структур чувствительных элементов методом поэтапного травления пластин монокристаллического кремния (ориентации (100)) или кварцевого стекла диаметром не менее 100 мм, включающим:

жидкостное травление, которое заключается в первичной химической обработке пластины, последовательном нанесении на пластину однослойной или двухслойной маски с двух сторон пластины, устойчивой к травлению в жидкостных анизотропных или изотропных растворах травления, формировании методами двусторонней фотолитографии химического травления рисунка, травлении на глубину, равную половине толщины пластины за вычетом половины толщины упругих элементов, и удалении маски, используемой при глубинном жидкостном травлении, и

ионно-плазменное травление, которое заключается в отмывке пластины, нанесении маски, стойкой к ионно-плазменному травлению, формировании элементов упругих и технологических перемычек в новой маске на одной стороне пластины, травлении ионно-плазменным методом на глубину, равную толщине упругих и технологических перемычек до образования сквозных отверстий, и снятии маски.

В частном варианте выполнения при ионно-плазменном травлении упругих элементов место их закрепления с неподвижной рамкой выполняют закругленным.

В еще одном частном варианте выполнения для последовательного нанесения на пластину кремния одно- или двухслойной маски, устойчивой к химическому травлению, последующее химическое травление пластины осуществляют на глубину Y=[(t/2-Z/2)], где t - толщина пластины, Z - толщина упругого элемента.

В другом частном случае выполнения для однослойной маски проводят жидкостное травление последней в травящем растворе, не вступающем в реакцию с материалом пластины на глубину ½ толщины маски.

В частном случае выполнения для двухслойной маски проводят жидкостное травление нижнего слоя на всю его толщину в травящем растворе, не вступающем в реакцию с материалом пластины и верхним слоем маски, а затем стравливают верхний слой маски ионно-плазменным методом.

В частном случае выполнения при изготовлении маятникового чувствительного элемента из монокристаллического кремния после ионно-плазменного травления выполняют: разделение пластины на отдельные элементы, их отмывку, нанесение на элементы слоя проводников и контактных площадок из электропроводящего материала через маску, сформированную в пластине монокристаллического кремния.

В еще одном частном случае выполнения способа при изготовлении маятникового чувствительного элемента из кварцевого стекла ионно-плазменное травление включает: отмывку пластины, нанесении с одной из сторон пластины маски, стойкой к ионно-плазменному травлению, с адгезионным подслоем, нанесение с другой стороны пластины электропроводящего слоя, стойкого к жидкостному травителю материала маски, с тем же адгезионным подслоем, как и у маски, формирование рисунков элементов упругих и технологических перемычек в маске на одной стороне пластины и слоя проводников и контактных площадок на другой стороне пластины, жидкостное травление маски, слоя проводников и адгезионного подслоя, травление ионно-плазменным методом на глубину, равную толщине упругих и технологических перемычек до образования сквозных отверстий, снятие маски и адгезионного подслоя.

Заявленное изобретение проиллюстрировано следующими чертежами:

На фиг.1 приведен кремниевый чувствительный элемент акселерометра с торсионами крестообразного типа: а) внешний вид; б) вид на пластине;

на фиг.2 - кварцевый чувствительный элемент акселерометра с торсионами мостикового типа: а) внешний вид; б) вид на пластине;

на фиг.3 - ориентация маски на пластине с ориентацией (100) для получения вертикального профиля травления;

на фиг. 4 – последовательность технологических операций маятниковых чувствительных элементов из кремния;

на фиг. 5 – последовательность технологических операций маятниковых чувствительных элементов из кварцевого стекла;

на фиг. 6 – последовательность технологических операций маятниковых чувствительных элементов из кварцевого стекла с «подвешенным» проводниковым слоем.

На фиг. 1-6 обозначено:

1 - маска;

2 - базовый срез пластины;

3 - пластина с нанесенной маской для жидкостного травления;

4 - пластина после жидкостного травления;

5 - пластина с нанесенной маской для ионно-плазменного травления;

6 - пластина после ионно-плазменного травления.

Заявленный способ изготовления чувствительного элемента акселерометра может быть осуществлен для получения кремниевых или кварцевых чувствительных элементов акселерометра различных конструкций. Данный способ основан на формировании групповым методом объемных структур чувствительных элементов методом поэтапного травления пластин монокристаллического кремния (ориентации (100)) или кварцевого стекла диаметром не менее 100 мм и включает жидкостное и ионно-плазменное травление. Жидкостное травление заключается в первичной химической обработке пластины, последовательном нанесении на пластину однослойной или двухслойной маски с двух сторон пластины, устойчивой к травлению в жидкостных анизотропных или изотропных растворах травления, формировании методами двусторонней фотолитографии, химического травления рисунка, травлении на глубину, равную половине толщины пластины за вычетом половины толщины упругих элементов, и удалении маски, используемой при глубинном жидкостном травлении.

Ионно-плазменное травление, заключается в отмывке пластины, нанесении маски, стойкой к ионно-плазменному травлению, формировании элементов упругих и технологических перемычек в новой маске на одной стороне пластины и травлении ионно-плазменным методом на глубину, равную толщине упругих и технологических перемычек, до образования сквозных отверстий. При ионно-плазменном травлении упругих элементов место их закрепления с неподвижной рамкой выполняют закругленным.

При изготовлении чувствительного элемента акселерометра из пластин монокристаллического кремния (ориентации (100)) после последовательного нанесения на пластину кремния одно- или двухслойной маски, устойчивой к химическому травлению, последующее химическое травление пластины осуществляют на глубину Y=[(t/2-Z/2)], где t - толщина пластины, Z - толщина упругого элемента. Для однослойной маски проводят жидкостное травление последней в травящем растворе, невступающем в реакцию с материалом пластины на глубину ½ толщины маски. Для двухслойной маски проводят жидкостное травление нижнего слоя на всю его толщину в травящем растворе, невступающем в реакцию с материалом пластины и верхним слоем маски, а затем стравливают верхний слой маски ионно-плазменным методом. После ионно-плазменного травления выполняют разделение пластины на отдельные элементы, их отмывку, нанесение на элементы слоя проводников и контактных площадок из электропроводящего материала через маску, сформированную в пластине монокристаллического кремния.

При изготовлении маятникового чувствительного элемента из кварцевого стекла ионно-плазменное травление включает: отмывку пластины, нанесение с одной из сторон пластины маски, стойкой к ионно-плазменному травлению, с адгезионным подслоем, нанесение с другой стороны пластины электропроводящего слоя с тем же адгезионным подслоем, как и у маски, формирование элементов упругих и технологических перемычек в маске на одной стороне пластины и слоя проводников и контактных площадок на другой стороне пластины, травление ионно-плазменным методом на глубину, равную толщине упругих и технологических перемычек до образования сквозных отверстий, травление маски и адгезионного подслоя маски и слоя проводников. С целью уменьшения паразитных механических напряжений, возникающих при изменении температуры из-за разницы в температурных коэффициентах расширения материалов упругого элемента и проводникового слоя, проходящего по поверхности упругих элементов, необходимо сформированные участки проводников располагать таким образом, чтобы они «висели» в воздухе (фиг. 6).

Применение указанного способа позволяет устранить следующие недостатки применяемых раннее методов, например при анизотропном жидкостном травлении кремния (без плазмохимического), при вскрытии отверстия в анизотропном травителе на торце рисунка формируются плоскости (110). При этом в другом месте пластины отверстия еще не вскрылись. Таким образом, скорость ухода линейного размера креста 4*cos45*V(110). По результатам измерений уход размера составил от 10 до 15 мкм при разнотолщинности пластины (±2 мкм).

Согласно численному моделированию при деформации торсиона, максимальные напряжения возникают в местах соединения торсиона с неподвижной рамкой. При анизотропном травлении места соединения гранятся плоскостями (111) и (110). При этом указанные точки являются концентраторами механических напряжений и могут при нагрузке приводить к разрушению торсионов.

При плазмохимическом травлении место закрепления креста можно сделать закругленным, что позволяет снизить механические напряжения в этих точках и тем самым повысить процент выхода годных.

При травлении кварца в изотропном травителе, при групповом травлении на пластинах диаметром 100 мм за счет неоднородности толщины пластины (± 2 микрометра) уход геометрических размеров составлял от 50 до 70 микрометров. Применение ионно-плазменного травления позволило достичь точности ±10 микрометров.

В качестве неисключительного примера выполнения способа можно привести получение кремниевого маятникового чувствительного элемента для акселерометра, который состоит из двух параллельно-расположенных балок, закреплённых по центру с помощью крестообразных торсионов с рамкой, и термокомпенсационной рамки с металлическими контактными площадками, предназначенной для защиты акселерометра от напряжений. На одном из плеч каждой балки, противоположных друг другу, травлением удалена часть материала кремния, поэтому в подвешенном состоянии из-за разности масс в плечах балки располагаются под углом к горизонту. Балки размещены таким образом, чтобы выемка располагалась на диагональных плечах балок.

Результаты моделирования показывают, что с помощью варьирования геометрией торсиона можно подобрать необходимые параметры жёсткости сочленения в достаточно широком диапазоне, ограниченном лишь габаритами кремниевой пластины, на которой выполняются элементы системы. Отличительной особенностью данной конструкции будут небольшие перемещения «подвешенного» элемента и высокая жёсткость конструкции.

В качестве материала для формирования структуры были выбраны кремниевые пластины n-типа с ориентацией (100) с удельным сопротивлением 4,5 Ом·см с двусторонней полировкой. Формирование структуры осуществлялось методом поэтапного травления кремния для получения нужной объемной структуры. Травление осуществлялось раствором KOH:H2O при температуре 80°С через маску оксида кремния. Локальные отверстия в маске формировались с помощью фотолитографии.

Другая сложность формирования структуры заключалась в выполнении требования к вертикальности стенок торсиона, которая может быть обеспечена ориентацией прямолинейных сторон маски под углом 45° относительно направления [110], вдоль которого ориентирован базовый срез кремниевой пластины (см. фиг. 3-а).

Вследствие поворота маски будет происходить подтравливание кремния под маской на величину, равную глубине травления (фиг. 3-б), а также подтравливание внешних углов выпуклых структур. Подтравливание связано с образованием на углах быстротравящихся граней типа (112). Таким образом, на фотошаблоне размеры элементов, параллельных плоскости (112), необходимо уменьшать на величину, равную глубине растравливания.

В результате ряда технологических операций, включающих в себя процессы фотолитографии, химическую обработку, анизотропное жидкостное травление, была сформирована структура маятника с вертикальными торсионами заданной геометрии.

Полученные образцы выламывались из пластины и методом анодного сращивания устанавливались на статорную пластину, с помощью которой осуществляются электрический контакт и определение выходных параметров устройства.

Метод позволяет изготавливать по групповой технологии большое количество маятников с высоким процентом выхода годных по пластине, причем наибольшее влияние на выход годных оказывает равномерность исходной пластины по толщине, то есть зависит от технологических возможностей производителя.

Таким образом, предлагаемый способ изготовления чувствительного элемента акселерометра позволяет производить чувствительные элементы групповым методом таким образом, что влияние недостатков исходных пластин сводится к минимуму, а качество получаемых деталей повышается.

Похожие патенты RU2656109C1

название год авторы номер документа
Способ изготовления интегральных преобразователей 2018
  • Пауткин Валерий Евгеньевич
  • Мишанин Александр Евгеньевич
  • Крайнова Ксения Юрьевна
RU2698486C1
Способ формирования объемных элементов в кремнии для устройств микросистемной техники и производственная линия для осуществления способа 2022
  • Смирнов Игорь Петрович
  • Козлов Дмитрий Владимирович
  • Харламов Максим Сергеевич
  • Шестакова Ксения Дмитриевна
  • Корпухин Андрей Сергеевич
RU2794560C1
СПОСОБ ИЗГОТОВЛЕНИЯ МИКРОМЕХАНИЧЕСКИХ УПРУГИХ ЭЛЕМЕНТОВ 2015
  • Пауткин Валерий Евгеньевич
RU2601219C1
Способ формирования монокристаллического элемента микромеханического устройства 2016
  • Пауткин Валерий Евгеньевич
  • Абдуллин Фархад Анвярович
  • Поспелов Алексей Владимирович
RU2628732C1
СПОСОБ ИЗГОТОВЛЕНИЯ ШТАМПА ДЛЯ НАНОИМПРИНТ ЛИТОГРАФИИ 2011
  • Бокарев Валерий Павлович
  • Горнев Евгений Сергеевич
  • Красников Геннадий Яковлевич
RU2476917C1
СПОСОБ ИЗГОТОВЛЕНИЯ КВАРЦЕВЫХ КРИСТАЛЛИЧЕСКИХ ЭЛЕМЕНТОВ Z-СРЕЗА 2012
  • Нетесин Николай Николаевич
  • Короткова Галина Петровна
  • Корзенев Геннадий Николаевич
  • Поволоцкий Сергей Николаевич
  • Карпова Маргарита Валерьевна
  • Аксенова Ольга Владимировна
  • Королев Олег Валентинович
  • Аладышева Наталья Николаевна
  • Шильников Антон Александрович
RU2475950C1
СПОСОБ КОМПЕНСАЦИИ РАСТРАВА ВНЕШНИХ УГЛОВ ФИГУР ТРАВЛЕНИЯ НА КРЕМНИЕВЫХ ПЛАСТИНАХ С ОРИЕНТАЦИЕЙ ПОВЕРХНОСТИ (100) 2006
  • Рубчиц Вадим Григорьевич
  • Тимошенков Сергей Петрович
  • Чаплыгин Юрий Александрович
  • Калугин Виктор Владимирович
  • Шилов Валерий Федорович
  • Плеханов Вячеслав Евгеньевич
  • Зотов Сергей Александрович
  • Анчутин Степан Александрович
  • Максимов Владимир Николаевич
  • Балычев Владимир Николаевич
  • Морозова Елена Сергеевна
  • Лапенко Вадим Николаевич
  • Бритков Олег Михайлович
RU2331137C1
Способ компенсации неоднородности травления кремниевых перемычек по чипу (варианты) и кремниевая пластина с распределением чипов по данному способу (варианты) 2020
  • Шамирян Денис Георгиевич
  • Тарёнкин Андрей Иванович
  • Шаховцев Михаил Михайлович
  • Абакаров Абдула Абакарович
RU2748050C1
Способ формирования плат микроструктурных устройств со сквозными металлизированными отверстиями на монокристаллических кремниевых подложках 2018
  • Смирнов Игорь Петрович
  • Тевяшов Александр Александрович
  • Ветрова Елена Владимировна
  • Капустян Андрей Владимирович
RU2676240C1
Способ изготовления профилированных кремниевых структур 2019
  • Пауткин Валерий Евгеньевич
  • Мишанин Александр Евгеньевич
  • Крайнова Ольга Михайловна
  • Лифанова Ания Зиннатулловна
RU2730104C1

Иллюстрации к изобретению RU 2 656 109 C1

Реферат патента 2018 года Способ изготовления чувствительного элемента акселерометра

Изобретение может быть использовано при создании и изготовлении микромеханических устройств, содержащих упругие гибкие деформируемые исполнительные элементы методом химического травления с использованием масок. Способ изготовления чувствительного элемента акселерометра основан на формировании групповым методом объемных структур чувствительных элементов методом поэтапного травления пластин монокристаллического кремния ориентации (100) или кварцевого стекла диаметром не менее 100 мм, включающим жидкостное и ионно-плазменное травление. Обеспечиваются увеличение производительности за счёт использования группового техпроцесса и повышение качества получаемых деталей. 6 з.п. ф-лы, 6 ил.

Формула изобретения RU 2 656 109 C1

1. Способ изготовления чувствительного элемента акселерометра, отличающийся тем, что он основан на формировании групповым методом объемных структур чувствительных элементов методом поэтапного травления пластин монокристаллического кремния (ориентации (100)) или кварцевого стекла диаметром не менее 100 мм, включающим:

жидкостное травление, которое заключается в первичной химической обработке пластины, последовательном нанесении на пластину однослойной или двухслойной маски с двух сторон пластины, устойчивой к травлению в жидкостных анизотропных или изотропных растворах травления, формировании методами двусторонней фотолитографии, химического травления рисунка, травлении на глубину, равную половине толщины пластины за вычетом половины толщины упругих элементов и удалении маски, используемой при глубинном жидкостном травлении, и

ионно-плазменное травление, которое заключается в отмывке пластины, нанесении маски, стойкой к ионно-плазменному травлению, формировании элементов упругих и технологических перемычек в новой маске на одной стороне пластины, травлении ионно-плазменным методом на глубину, равную толщине упругих и технологических перемычек до образования сквозных отверстий, и снятие маски.

2. Способ изготовления по п.1, отличающийся тем, что при ионно-плазменном травлении упругих элементов место их закрепления с неподвижной рамкой выполняют закругленным.

3. Способ изготовления по п.1, отличающийся тем, что после последовательного нанесения на пластину кремния одно- или двухслойной маски, устойчивой к химическому травлению, последующее химическое травление пластины осуществляют на глубину , где t - толщина пластины,Z - толщина упругого элемента.

4. Способ изготовления по п.3, отличающийся тем, что для однослойной маски проводят жидкостное травление последней в травящем растворе, невступающем в реакцию с материалом пластины на глубину ½ толщины маски.

5. Способ изготовления по п.4, отличающийся тем, что для двухслойной маски проводят жидкостное травление нижнего слоя на всю его толщину в травящем растворе, невступающем в реакцию с материалом пластины и верхним слоем маски, а затем стравливают верхний слой маски ионно-плазменным методом.

6. Способ изготовления по любому из пп.1-5, отличающийся тем, при изготовлении маятникового чувствительного элемента из монокристаллического кремния после ионно-плазменного травления выполняют разделение пластины на отдельные элементы, их отмывку, нанесение на элементы слоя проводников и контактных площадок из электропроводящего материала через маску, сформированную в пластине монокристаллического кремния.

7. Способ изготовления по п.1, отличающийся тем, что при изготовлении маятникового чувствительного элемента из кварцевого стекла ионно-плазменное травление включает отмывку пластины, нанесении с одной из сторон пластины маски, стойкой к ионно-плазменному травлению, с адгезионным подслоем, нанесение с другой стороны пластины электропроводящего слоя, стойкого к жидкостному травителю материала маски, с тем же адгезионным подслоем, как и у маски, формирование рисунков элементов упругих и технологических перемычек в маске на одной стороне пластины и слоя проводников и контактных площадок на другой стороне пластины, жидкостное травление маски, слоя проводников и адгезионного подслоя, травление ионно-плазменным методом на глубину, равную толщине упругих и технологических перемычек до образования сквозных отверстий, снятие маски и адгезионного подслоя.

Документы, цитированные в отчете о поиске Патент 2018 года RU2656109C1

СПОСОБ ИЗГОТОВЛЕНИЯ ГЛУБОКОПРОФИЛИРОВАННЫХ КРЕМНИЕВЫХ СТРУКТУР 2013
  • Тимошенков Сергей Петрович
  • Шилов Валерий Федорович
  • Рапидов Михаил Ольгердович
  • Миронов Сергей Геннадьевич
  • Тимошенков Алексей Сергеевич
  • Рубчиц Вадим Григорьевич
RU2539767C1
СПОСОБ ИЗГОТОВЛЕНИЯ ГЛУБОКОПРОФИЛИРОВАННЫХ КРЕМНИЕВЫХ СТРУКТУР 2014
  • Пауткин Валерий Евгеньевич
  • Козин Сергей Алексеевич
RU2572288C1
СПОСОБ МИКРОПРОФИЛИРОВАНИЯ КРЕМНИЕВЫХ СТРУКТУР 2014
  • Тимошенков Сергей Петрович
  • Шилов Валерий Федорович
  • Миронов Сергей Геннадьевич
  • Рапидов Михаил Ольгердович
  • Тимошенков Алексей Сергеевич
RU2559336C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЧУВСТВИТЕЛЬНЫХ ЭЛЕМЕНТОВ МИКРОМЕХАНИЧЕСКИХ СИСТЕМ 2010
  • Алексеев Николай Васильевич
  • Виноградов Анатолий Иванович
  • Зарянкин Николай Михайлович
  • Тимошенков Сергей Петрович
RU2439741C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЕМКОСТНОГО ПРЕОБРАЗОВАТЕЛЯ МЕХАНИЧЕСКИХ ВЕЛИЧИН 1989
  • Козин С.А.
  • Чистякова Т.Г.
SU1671066A1
Устройство для раздачи приточного воздуха 1980
  • Тарасов Евгений Иванович
  • Крылов Владимир Иванович
SU877255A1
ВАНКОРЕЗМИЦИН (ВАРИАНТЫ), ЕГО ИСПОЛЬЗОВАНИЕ, ШТАММ AMYCOLATOPSIS ВИДА HIL-006734 ДЛЯ ЕГО ПОЛУЧЕНИЯ 1999
  • Рамакришна Нироги Венката Стайа
  • Бхат Рави Гайанан
  • Срикумар Йаммадичийил Санкаранарайанан
  • Вийаякумар Ерра Котесвара Стайа
  • Накер Шантилал Дайарам
  • Эук Уттара Винайак
  • Танпур Райендра Пракаш
  • Хопманн Кордула
  • Курц Михаэл
  • Винк Йоахим
  • Зайберт Герхард
  • Ле Белле Доминик
  • Асзоди Жозсеф
RU2228337C2

RU 2 656 109 C1

Авторы

Козлов Дмитрий Владимирович

Смирнов Игорь Петрович

Корпухин Андрей Сергеевич

Запетляев Валентин Михайлович

Исакова Галина Александровна

Даты

2018-05-31Публикация

2017-03-24Подача