СПОСОБ ПОЛУЧЕНИЯ ТРЕХМЕРНЫХ УГЛЕРОДНЫХ СТРУКТУР ФОТОННОГО ТИПА ПИРОЛИЗОМ ЭТАНОЛА ПРИ ПОВЫШЕННОМ ДАВЛЕНИИ Российский патент 2018 года по МПК C01B32/15 B82B3/00 B82Y20/00 

Описание патента на изобретение RU2659277C1

Изобретение относится к области получения углеродных материалов, в том числе трехмерных углеродных структур фотонного типа, отличающихся от фотонных кристаллов периодичностью в ближнем ИК-диапазоне.

Известен способ получения углеродных материалов (Heer, W.A., Poncharal, Ph., Berger, С, Gezo, J., Song, Z., Bettini, J., Ugarte, D. Liquid Carbon, Carbon-Glass Beads, and the Crystallization of Carbon Nanotubes Science 307, 907, 907-910 (2005)), он позволяет получать из жидкого углерода полнотелые глобулы углеродного стекла, нанизанные на многослойные углеродные нанотрубки, в безкаталитической электрической дуге с использованием углеродных электродов в инертной среде при давлении инертного газа 0.5 атм и температуре около 5000 К.

Данный метод производится в условиях экстремально высокой температуры, что, во-первых, технологически трудно достижимо; во-вторых, - процесс протекает в кинетически сильно неравновесных условиях, имеет неконтролируемые технологические параметры, что не дает возможности получения углеродных частиц монодисперсных размеров; в-третьих, этим способом невозможно получение трехмерных углеродных структур фотонного типа.

Также известен способ получения фотонных кристаллов (US Patent application 20050160964 A1, 28.07.2005. Photonic-crystal filament and methods), основанный на покрытии металлических нитей сферическими углеродными частицами. Получаемые данным методом материалы представляют собой, по меньшей мере, двухфазные системы, состоящие из металлических нитей, покрытых сферическими углеродными частицами, что отражается на неоднородности их оптических и электрических свойств.

Наиболее близким аналогом изобретения является способ получения трехмерных углеродных структур фотонного типа с применением технологии инвертированных углеродных пленок (US Patent application 20010019037 A1 (2001) Three dimensionally periodic structural assemblies on nanometer and longer scales).

Данный метод производится в 4 этапа и заключается в получении монодисперсных SiO2 сфер, их дальнейшим связыванием в опаловидные структуры с последующим осаждением на них углеродных пленок по CVD технологии и вытравливанием на заключительном этапе полимера или SiO2 плавиковой кислотой. Для каждой стадии создаются свои условия температуры и давления. Однако данный метод позволяет получать только инвертированные пленочные (пустотелые) трехмерные углеродные структуры фотонного типа. К тому же, данная технология является многостадийной, что существенно усложняет процесс синтеза и требует использования кислоты HF, что делает методику технологически сложной и экологически вредной.

Техническим результатом настоящего изобретения является получение трехмерных углеродных структур фотонного типа, образованных полнотелыми монодисперсными углеродными глобулами, посредством пиролиза этанола при повышенном давлении; очевидными преимуществами способа является его одностадийность и полнотелый характер строения структурообразующих углеродных глобул. Полученный материал отличается от наиболее близкого аналога периодичностью в ближнем ИК-диапазоне, что определяется размером углеродных глобул 1-5 мкм.

Технический результат достигается тем, что способ получения трехмерных углеродных структур фотонного типа производится путем пиролиза этанола при температуре 500-800°C с термоградиентом 150°С под давлением 1000-4000 атм в присутствии платинового катализатора с добавлением нашатырного спирта и борной кислоты или микрокристаллов алмаза в течение 72 часов.

Сущность изобретения состоит в получении трехмерных углеродных структур фотонного типа посредством пиролиза этанола при температуре 500-800°С под давлением 1000-4000 атм в присутствии платинового катализатора. В платиновый реактор загружается этанол, добавляется нашатырный спирт в количестве 2% об. и борная кислота в количестве 2% об. или микрокристаллы алмаза в количестве 9×10-6-1×10-3% об. Реактор заваривается и помещается в автоклав. Автоклав, установка высокого давления выводится на заданные параметры температуры и давления. Создается термоградиент между нижней и верхней частями реактора 150°С. Пиролиз производится в присутствии платинового катализатора продолжительностью до 72 часов.

Способ получения углеродных веществ осуществляли с использованием установки для высокобарного пиролиза (фиг. 1). На фиг. 1 показана принципиальная схема установки (автоклава) для высокобарного пиролиза, которая состоит из следующих частей: 1, 3 - гайка, 2 - шайба, 4 - обтюратор, 5 - грондбукса, 6 - прокладка, 7 - корпус, 8 - платиновая ампула (реактор). В данной установке катализатором является сама платиновая ампула (реактор).

При осуществлении способа получения трехмерных углеродных структур фотонного типа производился наружный нагрев, рабочая температура измерялась термопарами, давление определялось расчетным путем по заполнению автоклава. При подключении капилляра к хвостовику автоклава давление измерялось манометром.

После охлаждения реактор вскрывался, из него извлекались трехмерные углеродные структуры фотонного типа. Характер получаемых структур подтверждался при микроскопических исследованиях с помощью сканирующего электронного микроскопа VEGA 3 TESCAN, Tescan, Czech Republic.

Пример 1.

Способ получения трехмерных углеродных структур фотонного типа проводился пиролизом этанола при Т=800°С, Р=1000 атм с термоградиентом - 150°С, который создавался за счет разницы температур в верхней и нижней частях автоклава в присутствии платинового катализатора, в систему добавлялся нашатырный спирт в количестве 2% об. и борная кислота в количестве 2% об., продолжительность синтеза составляла 72 ч.

Трехмерные углеродные структуры фотонного типа образовались в результате пиролиза этанола в присутствии платинового катализатора. В данных условиях при Т=800°С, Р=1000 атм с температурным градиентом 150°С получают трехмерные углеродные структуры фотонного типа, представленные самородным углеродом в виде одноразмерных структурно связанных между собой глобул (фиг. 2). На фиг. 2 показаны углеродные глобулы, собранные в трехмерные структуры с плотнейшей упаковкой.

Получают трехмерные углеродные структуры фотонного типа, состоящие из монодисперсных полнотелых углеродных глобул, представленных стеклоподобным углеродом.

Пример 2

Способ осуществлялся аналогично примеру 1 и добавлением в систему вместо нашатырного спирта и борной кислоты микрокристаллов алмаза в количестве 9x10-6% об.

Получают углеродные трехмерные углеродные структуры фотонного типа, представленные стеклоподобным углеродом (фиг. 3). На фиг. 4 показаны углеродные глобулы, собранные в трехмерные углеродные структуры фотонного типа, нарастающие на кристалл алмаза затравки.

Пример 3

Способ производят аналогично примеру 2, но при температуре 500°С и давлении 4000 атм с добавлением в систему микрокристаллов алмаза в количестве 1×10-3% об.

Получают трехмерные углеродные структуры фотонного типа, состоящие из полнотелых глобул (фиг. 5). На фиг. 5 показаны углеродные глобулы, собранные в трехмерные углеродные структуры фотонного типа.

Таким образом, предложенный метод позволяет получать углеродные структуры фотонного типа, представляющие собой трехмерно упорядоченные полнотелые монодисперсные углеродные глобулы размером 1-5 мкм, отличающиеся от фотонных кристаллов периодичностью в ближнем ИК-диапазоне.

Похожие патенты RU2659277C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ОДНОМЕРНЫХ УГЛЕРОДНЫХ СТРУКТУР ФОТОННОГО ТИПА ПИРОЛИЗОМ ЭТАНОЛА ПРИ ПОВЫШЕННОМ ДАВЛЕНИИ 2015
  • Шумилова Татьяна Григорьевна
  • Медведев Владимир Яковлевич
  • Иванова Лариса Александровна
  • Марчук Марина Валерьевна
  • Исаенко Сергей Иванович
  • Шевчук Сергей Сергеевич
RU2659275C1
СПОСОБ ПОИСКОВ АЛМАЗОВ НЕКИМБЕРЛИТОВОГО ТИПА 1994
  • Шумилова Татьяна Григорьевна
RU2087012C1
МЕТАЛЛОПОРИСТЫЙ КАТОД М-ТИПА, МОДИФИЦИРОВАННЫЙ НАНОУГЛЕРОДНОЙ ПЛЕНКОЙ, И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2021
  • Крачковская Татьяна Михайловна
  • Козлов Вячеслав Иванович
  • Журавлев Сергей Дмитриевич
RU2780019C1
СПОСОБ УЛУЧШЕНИЯ КАЧЕСТВА МЕТАМОРФИЧЕСКИХ АЛМАЗОВ 1994
  • Шумилова Татьяна Григорьевна
  • Янулова Людмила Алексеевна
RU2080289C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОСТРУКТУРИРОВАННЫХ УГЛЕРОД-КРЕМНЕЗЕМНЫХ КОМПОЗИТОВ ИЗ БИОМАССЫ 2006
  • Яковлев Вадим Анатольевич
  • Елецкий Петр Михайлович
  • Ермаков Дмитрий Юрьевич
  • Пармон Валентин Николаевич
RU2310603C1
УГЛЕРОДНЫЕ НАНОСТРУКТУРЫ И СЕТКИ, ПОЛУЧЕННЫЕ ХИМИЧЕСКИМ ОСАЖДЕНИЕМ ИЗ ПАРОВОЙ ФАЗЫ 2011
  • Каулджи Кришна Нараян Кумар
  • Копер Герардус Йозеф Мария
  • Ван Ралтен Рутгер Александер Давид
RU2579075C2
НАНОКОМПОЗИТ НА ОСНОВЕ АЗОТОСОДЕРЖАЩИХ УГЛЕРОДНЫХ НАНОТРУБОК С ИНКАПСУЛИРОВАННЫМИ ЧАСТИЦАМИ КОБАЛЬТА И НИКЕЛЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2010
  • Савилов Сергей Вячеславович
  • Лунин Валерий Васильевич
  • Иванов Антон Сергеевич
  • Черкасов Николай Борисович
  • Егоров Александр Владимирович
  • Суслова Евгения Викторовна
  • Антонов Петр Евгеньевич
RU2546154C1
СПОСОБ ПОЛУЧЕНИЯ НАНОСТРУКТУРИРОВАННОГО УГЛЕРОДНОГО МАТЕРИАЛА С ВЫСОКОЙ УДЕЛЬНОЙ ПОВЕРХНОСТЬЮ И МИКРОПОРИСТОСТЬЮ 2006
  • Яковлев Вадим Анатольевич
  • Елецкий Петр Михайлович
  • Пармон Валентин Николаевич
RU2311227C1
СВЯЗУЮЩЕЕ ДЛЯ ИЗГОТОВЛЕНИЯ АБРАЗИВНЫХ ЭЛЕМЕНТОВ И ИНСТРУМЕНТОВ (ВАРИАНТЫ) И СПОСОБ ИХ ИЗГОТОВЛЕНИЯ 2000
  • Семенов С.С.
  • Гогунский К.Е.
  • Петрова В.П.
RU2166425C1
Катализатор для разложения аммиака 1980
  • Ермоленко Игорь Николаевич
  • Ульянова Татьяна Михайловна
  • Савик Валентина Николаевна
  • Каверзнева Инесса Ивановна
  • Макаренко Елена Викторовна
SU980811A1

Иллюстрации к изобретению RU 2 659 277 C1

Реферат патента 2018 года СПОСОБ ПОЛУЧЕНИЯ ТРЕХМЕРНЫХ УГЛЕРОДНЫХ СТРУКТУР ФОТОННОГО ТИПА ПИРОЛИЗОМ ЭТАНОЛА ПРИ ПОВЫШЕННОМ ДАВЛЕНИИ

Изобретение относится к области углеродных материалов и может быть использовано в электронной промышленности. Трехмерные углеродные структуры фотонного типа получают пиролизом этанола при температуре 500-800 °C и давлении 1000-4000 атм в течение 72 ч в присутствии платинового катализатора с добавлением 2% об. борной кислоты и 2% об. нашатырного спирта или микрокристаллов алмаза в количестве 9·10-6-1·10-3% об. Изобретение позволяет получать прямым одностадийным способом трехмерные углеродные структуры фотонного типа, представляющие собой трёхмерно упорядоченные полнотелые монодисперсные углеродные глобулы размером 1-5 мкм, отличающиеся от фотонных кристаллов периодичностью в ближнем ИК-диапазоне. 5 ил., 3 пр.

Формула изобретения RU 2 659 277 C1

Способ получения трехмерных углеродных структур фотонного типа, отличающийся тем, что способ осуществляется посредством пиролиза этанола при температуре 500-800°С с термоградиентом 150°С под давлением 1000-4000 атм в течение 72 часов в присутствии платинового катализатора с добавлением борной кислоты в количестве 2% об. и нашатырного спирта в количестве 2% об. или микрокристаллов алмаза в количестве 9×10-6-1×10-3% об.

Документы, цитированные в отчете о поиске Патент 2018 года RU2659277C1

Перекатываемый затвор для водоемов 1922
  • Гебель В.Г.
SU2001A1
СПОСОБ ПОЛУЧЕНИЯ ПОЛИФУНКЦИОНАЛЬНЫХ ФОТОННЫХ КРИСТАЛЛОВ СО СТРУКТУРОЙ ИНВЕРТИРОВАННОГО ОПАЛА 2008
  • Климонский Сергей Олегович
  • Синицкий Александр Сергеевич
  • Бондаренко Евгений Алексеевич
  • Михнев Леонид Васильевич
  • Гусев Александр Сергеевич
  • Каргин Николай Иванович
  • Бондаренко Сергей Алексеевич
  • Абрамова Вера Владимировна
  • Самсонова Елена Валерьевна
RU2383082C1
ФОТОННЫЕ МИКРОЭЛЕКТРОМЕХАНИЧЕСКИЕ СИСТЕМЫ И СТРУКТУРЫ 2005
  • Чуй Клэренс
RU2413963C2
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОД-МЕТАЛЛИЧЕСКОГО МАТЕРИАЛА КАТАЛИТИЧЕСКИМ ПИРОЛИЗОМ ЭТАНОЛА 2012
  • Ткачев Алексей Григорьевич
  • Рухов Артем Викторович
  • Туголуков Евгений Николаевич
  • Котельников Сергей Александрович
  • Рухова Марина Олеговна
RU2516548C2
Пресс для выдавливания из деревянных дисков заготовок для ниточных катушек 1923
  • Григорьев П.Н.
SU2007A1
PRAVIN JAGDALE et al
Carbon Nano Beads (CNBs): a new ingredient in reinforcing materials, Workshop IGF, 1-3 marzo 2012, Forni di Sopra (UD), Italia, p
Способ обработки грубых шерстей на различных аппаратах для мериносовой шерсти 1920
  • Меньшиков В.Е.
SU113A1

RU 2 659 277 C1

Авторы

Шумилова Татьяна Григорьевна

Медведев Владимир Яковлевич

Иванова Лариса Александровна

Марчук Марина Валерьевна

Исаенко Сергей Иванович

Шевчук Сергей Сергеевич

Даты

2018-06-29Публикация

2015-12-31Подача