METHOD FOR DETERMINING RISK OF HEART TRANSPLANT REJECTION Russian patent published in 2018 - IPC A61B8/00 G06N3/02 

Abstract RU 2661559 C1

FIELD: medicine.

SUBSTANCE: invention relates to medicine, namely, in transplantology and cardiology, and can be used to determine the degree of risk of transplant rejection. Method involves identifying predictors. Using an ultrasound method of investigation, speckle-tracking echocardiography, reveal a complex of 13 predictors of cardiac transplant rejection: global peak systolic strain of left ventricular (GLSLV, -%), longitudinal left ventricular strain in 4 chamber position (A4C, -%), longitudinal left ventricular strain in a two-chamber position (A2C, -%), longitudinal left ventricular strain in three chamber position (A3C, -%), global peak systolic strain rate of left ventricle), (GLSTRLV, -c-'), radial strain of left ventricular (RadSLV, %), radial strain rate of left ventricular, (RadSTRLV, c-'), circular strain of left ventricular (CirSLV, -%), circular strain rate of left ventricular (Cir STR LV, -c-'), twisting (twist, ''), rotation of the apical segments of the left ventricle), (ROT APEX, °), rotation of basal segments of the left ventricle (ROT BASE, °), rotation of the middle segments of the left ventricle (rotation of the middle segments of the left ventricle ROT MID, °). Then, using the formula, using computer analysis, we calculate the risk of rejection of the cardiac transplant: where Z k – “output” data of the third layer for 4 groups, e is an exponent, i 1…8 – index of the location of the “output” data of the second layer, the neural network, j 1…13 – index of the location of the “output” data of the first layer of the neural network, X'' – “output” data of the first layer of the neural network, w j – weight 13 of the normalized values, w I – weight 8 of normalized values, e – thresholds. Formula combines three layers of a neural network: transform 13 predictors into “normalized” values of the first layer of the neural network and get 13 “normalized” values (j). Transform the values of the first layer of the neural network into the second layer of the neural network and 8 “normalized” values (7) are obtained at the “output”. Transform the parameters of the second layer of the neural network according to the indicated mathematical formula into the “output” data of the third layer of the neural network, which includes: rejection group 1 – recipients without cellular and humoral rejection, ACR 0, AMR 0; group of rejection 2 – recipients with cellular rejection of 1 degree, ACR 1; group of rejection 3 – recipients with cellular rejection of 2 degrees, ACR 2; group of rejection 4 – recipients with humoral rejection of 1 or 2 degree, AMR 1. Then get Zk from 0 to 1, corresponding to the risk of rejection of the cardiac graft. In this case, the recipient will belong to that group in the third layer, whose values are modulo 0.9–1.

EFFECT: method allows to determine the risk of rejection of the cardiac transplant, to reveal early predictors of cardiac transplant rejection during the ultrasound stage, to identify the degree of risk of rejection of the cardiac graft, to classify the recipients of rejection of the cardiac graft by the mechanism and degree of rejection.

1 cl, 15 dwg, 4 ex

Similar patents RU2661559C1

Title Year Author Number
METHOD FOR EARLY DIAGNOSIS OF TRANSPLANT REJECTION 2019
  • Verevkin Aleksandr Aleksandrovich
  • Kosmacheva Elena Dmitrievna
  • Slavinskij Aleksandr Aleksandrovich
  • Stavenchuk Tatyana Vladimirovna
RU2728683C1
METHOD FOR NON-INVASIVE DIAGNOSIS OF MYOCARDIAL FIBROSIS OF TRANSPLANTED HEART AT A LONG POST-TRANSPLANTATION PERIOD IN RECIPIENTS SUFFERING ACUTE REJECTION 2019
  • Shevchenko Olga Pavlovna
  • Ulybysheva Adelya Anverovna
  • Gichkun Olga Evgenevna
  • Stakhanova Ekaterina Anatolevna
  • Mozhejko Natalya Pavlovna
  • Shevchenko Aleksej Olegovich
  • Gote Sergej Vladimirovich
RU2709193C1
METHOD FOR DIAGNOSING ACUTE REJECTION OF TRANSPLANT IN TRANSPLANTED HEART RECIPIENT 2020
  • Velikij Dmitrij Alekseevich
  • Gichkun Olga Evgenevna
  • Mozhejko Natalya Pavlovna
  • Stakhanova Ekaterina Anatolevna
  • Ulybysheva Adelya Anverovna
  • Shevchenko Olga Pavlovna
  • Shevchenko Aleksej Olegovich
RU2758973C1
METHOD FOR DIAGNOSING ACUTE TRANSPLANT REJECTION IN TRANSPLANTED HEART RECIPIENTS 2020
  • Shevchenko Olga Pavlovna
  • Velikij Dmitrij Alekseevich
  • Gichkun Olga Evgenevna
  • Mozhejko Natalya Pavlovna
  • Marchenko Aleksej Vasilevich
  • Sharapchenko Sofya Olegovna
  • Shevchenko Aleksej Olegovich
RU2758994C1
METHOD FOR PREOPERATIVE PREDICTION OF ACUTE CELLULAR REJECTION OF A TRANSPLANTED HEART 2022
  • Shevchenko Olga Pavlovna
  • Velikij Dmitrij Alekseevich
  • Sharapchenko Sofya Olegovna
  • Gichkun Olga Evgenevna
  • Mozhejko Natalya Pavlovna
  • Koloskova Nadezhda Nikolaevna
  • Shevchenko Aleksej Olegovich
  • Gote Sergej Vladimirovich
RU2798948C1
METHOD FOR EARLY NON-INVASIVE DIAGNOSIS OF STENOSING CORONARY ARTERY ATHEROSCLEROSIS IN DIAGNOSTIC TRANSESOPHAGEAL ECHOCARDIOGRAPHY 2022
  • Vrublevskii Aleksandr Vasilevich
  • Boshchenko Alla Aleksandrovna
  • Bogdanov Iurii Igorevich
  • Saushkin Viktor Viacheslavovich
  • Shnaider Olga Leonidovna
RU2795362C1
METHOD FOR ASSESSING LEFT VENTRICULAR MYOCARDIAL DEFORMATION IN SMOKERS WITH EARLY STAGES OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE OF LIGHT DEGREE AND ARTERIAL HYPERTENSION OF I STAGE 2020
  • Kondrashova Elena Anatolevna
  • Nevzorova Vera Afanasevna
  • Kabalyk Maksim Aleksandrovich
  • Kondrashov Dmitrij Vasilevich
RU2743245C1
METHOD FOR PREDICTION OF LETHAL OUTCOME IN PATIENTS WITH ISCHEMIC STROKE 2023
  • Petrikov Sergej Sergeevich
  • Khamidova Lajla Timarbekovna
  • Rybalko Natalya Vladimirovna
  • Ivannikov Aleksandr Aleksandrovich
  • Bashirova Eva Alikovna
  • Ramazanov Ganipa Ramazanovich
RU2817260C1
METHOD FOR PREDICTION OF RISK OF VENTRICULAR TACHYCARDIA PAROXYSMS DEVELOPMENT IN PATIENTS IN FIRST DAYS OF MYOCARDIAL INFARCTION 2017
  • Lykasova Elena Aleksandrovna
  • Todosijchuk Viktor Viktorovich
  • Kuznetsov Vadim Anatolevich
  • Dyachkov Sergej Mikhajlovich
RU2650039C1
METHOD FOR ASSESSING STRUCTURAL CHANGES OF ATRIAL MYOCARDIUM IN PATIENTS WITH HEART RHYTHM DISORDERS 2014
  • Stukalova Ol'Ga Vladimirovna
  • Aparina Ol'Ga Petrovna
  • Parkhomenko Denis Vladimirovich
  • Mironova Natalija Aleksandrovna
  • Golitsyn Sergej Pavlovich
  • Ternovoj Sergej Konstantinovich
RU2549825C1

RU 2 661 559 C1

Authors

Kosmacheva Elena Dmitrievna

Slavinskij Aleksandr Aleksandrovich

Stavenchuk Tatyana Vladimirovna

Dates

2018-07-17Published

2017-02-20Filed