Способ изготовления полупроводникового прибора Российский патент 2018 года по МПК H01L21/336 

Описание патента на изобретение RU2674413C1

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления подзатворного диэлектрика с пониженной плотностью дефектов.

Известен способ изготовления полупроводникового прибора [Пат. 4985739 США, МКИ HO1L 29/80] путем формирования верхнего и нижнего изолирующих друг от друга затворов. В полевых транзисторах использована структура, в которой одна система областей сток-исток окружает другую систему областей сток-исток. Нижний затвор - скрытый, верхний - соединяется с контактной площадкой через диффузионный барьер для предотвращения проникновения металла в структуру. Область канала в экранирующие области формируют с помощью ионной имплантации. В таких полупроводниковых структурах из-за возникновения механических напряжений ухудшаются параметры приборов.

Известен способ изготовления полупроводникового прибора [Пат. 5100820 США, МКИ HOIL 21/336] в которой поверхность р-кремниевой подложки, содержащий изолирующие области защитного слоя оксида последовательно покрывается слоями подзатворного оксида кремния, затвора n+ типа поликристаллического кремния и верхнего оксида кремния. Область будущего затвора маскируется слоем нитрида кремния. Структура подвергается термическому окислению во влажном кислороде при повышенном давлении и в последующем формируют слой затвора. Структура последовательно имплантируется ионами мышьяка с использованием слоев защитного оксида кремния и нитрида кремния в качестве маски для формирования n+ областей истока-стока, а затем - ионами р+ с целью формирования n- областей истока-стока с плавным профилем легирования. Поверхность пассивируется слоем борофосфорносиликатного стекла, в котором вскрываются контактные окна под алюминий.

Недостатками способа являются:

- повышенная плотность дефектов в полупроводниковых структурах;

- образование механических напряжений;

- низкая технологичность.

Задача, решаемая изобретением: снижение плотности дефектов, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличение процента выхода годных.

Задача решается созданием подзатворного диэлектрика путем формирования пленки тантала толщиной 28 нм со скоростью осаждения 30 нм/мин на подложку, нагретую до 70°С, в вакууме при давлении 10-6-10-7 мм рт.ст. на пластине кремния р-типа проводимости с ориентацией (100) с последующим окислением в кислороде при температуре 530°С в течение 15 мин. и формированием окисла тантала Та2О5 толщиной 60 нм с последующим термическим отжигом при температуре 700°С в инертной среде в течение 5 мин.

Технология способа состоит в следующем: на пластине кремния р-типа проводимости с ориентацией (100) формируют пленку тантала толщиной 28 нм со скоростью осаждения 30 нм/мин, на подложку нагретую до 70°С, в вакууме при давлении 10-6-10-7 мм рт. ст. Затем проводят окисление в кислороде при температуре 530°С в течение 15 мин. и формируют окисел тантала Та2С5 толщиной 60 нм, с последующим термическим отжигом при температуре 700°С в инертной среде в течение 5 мин. Улучшение параметров полупроводниковой структуры связано с тем, что окисел тантала Та2O5 содержит электронные ловушки. Все это улучшает структуру, уменьшает число ловушек для носителей заряда вблизи границы раздела. Активные области полупроводникового прибора формировались стандартным способом.

По предлагаемому способу были изготовлены и исследованы полупроводниковые приборы. Результаты обработки представлены в Таблице 1.

Экспериментальные исследования показали, что выход годных полупроводниковых приборов, на партии пластин сформированных в оптимальном режиме увеличился на 15,5%.

Технический результат: снижение плотности дефектов, обеспечение технологичности, улучшение параметров структур, повышение качества и увеличения процента выхода годных.

Стабильность параметров во всем эксплуатационном интервале температур была нормальной и соответствовала требованиям.

Предложенный способ изготовления полупроводникового прибора позволяет повысить процент выхода годных приборов и улучшить их надежность.

Похожие патенты RU2674413C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОГО ПРИБОРА 2015
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Арслан Гасанович
  • Черкесова Наталья Васильевна
RU2596861C1
Способ изготовления полупроводникового прибора 2017
  • Хасанов Асламбек Идрисович
  • Кутуев Руслан Азаевич
  • Мустафаев Арслан Гасанович
  • Мустафаев Гасан Абакарович
RU2654960C1
Способ изготовления полупроводникового прибора 2020
  • Хасанов Асламбек Идрисович
  • Мустафаев Арслан Гасанович
  • Мустафаев Гасан Абакарович
RU2748455C1
СПОСОБ ИЗГОТОВЛЕНИЯ ТОНКОПЛЕНОЧНОГО ТРАНЗИСТОРА 2012
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Арслан Гасанович
  • Уянаева Марьям Мустафаевна
RU2515334C1
Способ изготовления полупроводникового прибора 2015
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Арслан Гасанович
RU2606780C1
Способ изготовления полупроводникового прибора 2023
  • Мустафаев Гасан Абакарович
  • Черкесова Наталья Васильевна
  • Мустафаев Арслан Гасанович
  • Хасанов Асламбек Идрисович
  • Мустафаев Абдулла Гасанович
RU2805132C1
Способ изготовления полупроводникового прибора 2017
  • Кутуев Руслан Азаевич
  • Хасанов Асламбек Идрисович
  • Мустафаев Арслан Гасанович
  • Мустафаев Гасан Абакарович
RU2650350C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОГО ПРИБОРА 2017
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Арслан Гасанович
  • Черкесова Наталья Васильевна
RU2661546C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОГО ПРИБОРА 2014
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Арслан Гасанович
RU2581418C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОГО ПРИБОРА 2011
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Арслан Гасанович
RU2466476C1

Реферат патента 2018 года Способ изготовления полупроводникового прибора

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления подзатворного диэлектрика с пониженной плотностью дефектов. Изобретение обеспечивает снижение плотности дефектов, повышение технологичности, улучшение параметров приборов, повышение качества и увеличение процента выхода годных. Технология способа состоит в следующем: на пластине кремния р-типа проводимости с ориентацией (100) формируют пленку тантала толщиной 28 нм со скоростью осаждения 30 нм/мин, на подложку, нагретую до 70°С, в вакууме при давлении 10-6-10-7 мм рт.ст. Затем проводят окисление в кислороде при температуре 530°С в течение 15 мин и формируют окисел тантала Та2O5 толщиной 60 нм, с последующим термическим отжигом при температуре 700°С в инертной среде в течение 5 мин. Улучшение параметров полупроводниковой структуры связано с тем, что окисел тантала Та2О5 содержит электронные ловушки. Все это улучшает структуру, уменьшает число ловушек для носителей заряда вблизи границы раздела. Активные области полупроводникового прибора формировались стандартным способом. 1 табл.

Формула изобретения RU 2 674 413 C1

Способ изготовления полупроводникового прибора, включающий процессы формирования областей стока, истока, затвора и подзатворного диэлектрика, отличающийся тем, что подзатворный диэлектрик формируют путем создания пленки тантала толщиной 28 нм со скоростью осаждения 30 нм/мин на подложку, нагретую до 70°С, в вакууме при давлении 10-6-10-7 мм рт.ст. на пластине кремния с последующим окислением в кислороде при температуре 530°С в течение 15 мин и формированием окисла тантала Та2О5 толщиной 60 нм с последующим термическим отжигом при температуре 700°С в инертной среде в течение 5 мин.

Документы, цитированные в отчете о поиске Патент 2018 года RU2674413C1

RU 2012150647 A, 10.06.2014
СОСТАВ ГАЗОВОЙ СМЕСИ ДЛЯ ФОРМИРОВАНИЯ НИТРИД ТАНТАЛОВОГО МЕТАЛЛИЧЕСКОГО ЗАТВОРА МЕТОДОМ ПЛАЗМОХИМИЧЕСКОГО ТРАВЛЕНИЯ 2010
  • Данила Андрей Владимирович
  • Гущин Олег Павлович
  • Красников Геннадий Яковлевич
  • Бакланов Михаил Родионович
  • Шамирян Денис Георгиевич
RU2450385C1
ТУННЕЛЬНЫЙ НЕЛЕГИРОВАННЫЙ МНОГОЗАТВОРНЫЙ ПОЛЕВОЙ НАНОТРАНЗИСТОР С КОНТАКТАМИ ШОТТКИ 2016
  • Вьюрков Владимир Владимирович
  • Лукичев Владимир Федорович
  • Руденко Константин Васильевич
  • Свинцов Дмитрий Александрович
  • Семин Юрий Федорович
RU2626392C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛЕВОГО НАНОТРАНЗИСТОРА С КОНТАКТАМИ ШОТТКИ С УКОРОЧЕННЫМ УПРАВЛЯЮЩИМ ЭЛЕКТРОДОМ НАНОМЕТРОВОЙ ДЛИНЫ 2012
  • Вьюрков Владимир Владимирович
  • Кривоспицкий Анатолий Дмитриевич
  • Лукичев Владимир Федорович
  • Окшин Алексей Александрович
  • Орликовский Александр Александрович
  • Руденко Константин Васильевич
  • Семин Юрий Федорович
RU2504861C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОГО ПРИБОРА С УПРАВЛЯЮЩИМ ЭЛЕКТРОДОМ НАНОМЕТРОВОЙ ДЛИНЫ 2003
  • Валиев К.А.
  • Орликовский А.А.
  • Кривоспицкий А.Д.
  • Окшин А.А.
RU2237947C1
US 6114735 A, 05.09.2000
US 20040104433 A1, 03.06.2004
Устройство для обработки изделий в жидкостях 1987
  • Колдышев Владимир Анатольевич
SU1435663A1

RU 2 674 413 C1

Авторы

Хасанов Асламбек Идрисович

Мустафаев Арслан Гасанович

Мустафаев Гасан Абакарович

Кутуев Руслан Азаевич

Даты

2018-12-07Публикация

2017-12-29Подача