Изобретение относится к биотехнологии, в частности, к способу получения комбинированной лекарственной формы углеродного сорбента и сапонина, и может быть использовано в фармацевтической промышленности в технологии изготовления лекарств.
Сапонины - вещества, нашедшие применение в практической медицине благодаря широкому спектру биологической и фармакологической активности (иммуностимулирующее, гипогликемическое, адаптогенное действия) [Jiang Yulin, Massiot Georges, Lavaud Catherine, Teulon Jean-Marie, Guechot Christophe, Haag-BerrurierMicheline, Anton Robert //Phytochemistri. 1991. Vol. 30, №7. P. 2357-2360]. Токсичность и способность вызывать различные местные реакции препятствовали их широкому использованию. Во-первых, они обладают гемолитической активностью, что приводит к нежелательным побочным эффектам. А во-вторых, в слабощелочных (близких к нейтральным) условиях от молекул сапонинов отщепляются химические группы, важные для фармакологической активности, из чего следует, что при физиологическом значении рН=7,4 (при котором протекают многие процессы в организме) сапонины нестабильны [Roner М. Antiviral activity obtained from aqueous extracts of the Chilean soapbark tree (Quillaja saponaria Molina) / M. Roner [et al] // Journal of General Virology. - 2007. - №88. - C. 275-285].
Иммобилизация на поверхности сорбентов позволит предотвратить их разрушение с сохранением функциональных свойств.
Перспективным носителем для иммобилизации лекарственных препаратов является уголь активированный. Основным свойством данного сорбента является наличие развитой внутренней пористости с суммарным объемом пор по бензолу от 0,4 до 1,3 см3/г. Структура активного угля образована микрокристаллитами углерода. Размеры их плоскостей находятся в пределах 1-3 нм, т.е. они образованы 13-20 конденсированными гексагональными кольцами атомов углерода. Ориентация отдельных плоскостей в микрокристаллитах углерода довольно часто нарушена и отдельные слои беспорядочно сдвинуты друг относительно друга, не всегда сохраняя при этом взаимное параллельное расположение. Неоднородная масса, состоящая из кристаллитов графита и аморфного углерода, обусловливает необычную структуру активных углей. Между отдельными частицами появляются щели и трещины (поры) шириной порядка 10-10-10-8 м. Через эту систему пор осуществляется массоперенос во всех процессах, протекающих на внутренней поверхности углеродсодержащего материала.
Известны композиционные материалы на основе углеродного сорбента и ферментов [Патент US 4289853, МПК C12N 11/02, опубл. 15.09.1981], в частности, инсулина [Патент РФ 2090186, МПК А61K 9/64, А61K 33/44], пепсина [Вериченко С.Б., Повжиткова М.С., Лысенко М.К. Адсорбция пепсина желудочного сока активированным углем // Физиол. журнал. -1986. -Т. 32, №3. -С. 293-297], инвертазы [Мирзарахметова Д.Т., Дехконов Д.Б., Рахимов М.М. Свойства инвертазы, ковалентно иммобилизованной на активированном угле // Прикладная биохимия и микробиология. - 2009. - Т. 45. №3. - С. 287-291].
Наиболее близким аналогом является композиционный материал, состоящий из фермента (глюкоамилазы, папаина, трипсина и др.) и твердого носителя - активированного угля, полученный путем иммобилизации ферментов на активированном угле с удельной поверхностью 600-1000 м2/г [Патент US4289853, МПК C12N 11/02, опубл. 15.09.1981]. Активированный уголь подвергают специальной обработке: вначале модифицируют его поверхность обработкой концентрированными кислотами, преимущественно азотной, для образования поверхностных кислородсодержащих функциональных групп, в том числе карбоксигрупп, а затем модифицированный уголь выдерживают в растворе бифункционального сшивающего агента (карбодиимида, диальдегида и др.). Подготовленный таким образом активированный уголь вводят в контакт с раствором фермента, при этом происходит связывание ферментной глобулы посредством образования ковалентных связей, и поверхность угля заполняется ферментом. Поскольку только 10-30% пористого пространства активированного угля занимают мезопоры размером 300-1000 А, подходящие для иммобилизации крупных белковых молекул ферментов, максимальная величина адсорбции составляет 49 мг белка/г угля. Недостатком данного способа является длительная подготовка сорбционного материала и связывание с сорбатом (ферментом) посредством образования ковалентных связей.
Задачей изобретения является разработка способа получения комбинированного препарата на основе сапонин-углеродного комплекса.
Технический результат заключается в расширении ассортимента композиционных материалов на основе угля активного, снижении токсического эффекта при терапевтическом использовании сапонинов.
Технический результат достигается тем, что композиционный материал на основе угля, активированного при температуре 900-1000°С, согласно изобретению, дополнительно содержит тритерпеновый сапонин в количестве не менее 30% от массы угля. Способ получения композиционного материала на основе угля обыкновенного и тритерпеновых сапонинов заключается в приведении сорбента в контакт с раствором иммобилизуемого вещества, сушке и, согласно изобретению, концентрация водного раствора сапонина составляет 0,1-0,25 г/л, сорбционный процесс проходит или в динамических условиях при пропускании раствора через сорбент из расчета 2,5-3 л/г сорбента со скоростью 0,25-0,5 мл/мин, или в статических условиях из расчета 1-2 л/г сорбента выдерживается при комнатной температуре в течение не менее 4 часов.
Применение сапонина, иммобилизованного на углеродном материале, позволит изменить скорость высвобождения гликозида, тем самым снизит его токсический эффект.
Имея гидрофобную поверхность, активированный уголь обладает малым сродством к молекулам воды. Легче сорбируются углем вещества, имеющие в своей структуре ароматические составляющие, алифатические цепи углеродных атомов. Тритерпеновый сапонин - поверхностно-активное соединение, имеющее в своей структуре агликон-конденсированную систему колец (гидрофобная часть) и углеводные цепочки. Поэтому связывание с поверхностью угля будет преимущественно " за счет гидрофобных взаимодействий с неполярной частью молекулы сапонина.
На фиг. 1 приведена зависимость рН времени в ходе сорбции сапонина (С=0,05 мг/мл) активированным углем для: а) холостого раствора, б) раствора сапонина.
На фиг. 2 изображена схема взаимодействия «сапонин Qullaja Saponaria Molina -активированный уголь».
На фиг. 3 приведена поверхность зерен сорбента по данным атомно-силовой микроскопия.
Установлено, что особенно сильное влияние на ход сорбционного процесса оказывает природа поверхности активированных углей и их поведение в растворах электролитов. Чистый уголь, активированный при высокой температуре (900-1000°С) и затем приведенный в соприкосновение с воздухом, поглощает из растворов электролитов анионы, посылая взамен их в раствор эквивалентное количество гидроксильных ионов, т.е. ведет себя подобно анионообменнику в ОН - форме.
Вследствие того, что активные угли имеют очень высокую удельную поверхность, двойной электрический слой угля имеет большую емкость, что приводит к значительной анионообменной способности (обменная емкость обычных активированных углей по кислотам обычно составляет 0,4-0,6 мг-экв/г). Однако проведенные эксперименты по исследованию кислотности раствора сапонина в ходе сорбции на активированном угле в кинетических условиях показали отсутствие ионнообменного механизма взаимодействия из-за малой доступности заряженных групп угля для функциональных групп сапонина (фиг. 1). Очевидно, в основе физико-химической природы сорбции сапонина с поверхностью угля лежат гидрофобные (дисперсионные) взаимодействия, показанные на фиг. 2.
Получаемый модифицированный сорбент имеет высокую емкость по сапонину за счет заполнения микро- и мезопор молекулами сапонина и образованием ассоциатов. Влагосодержание сорбента снижено с 12 до 5%. Композитный материал на основе активированного угля отличается модифицированием поверхности сорбента тритерпеновым гликозидом-сапонином. Анализ данных атомно-силовой микроскопии поверхности зерен сорбента показал образование крупных зернистых структур сапонина (фиг. 3).
Предложенный сорбционный способ прост в исполнении, не требует модификации сорбента.
Пример 1. Навеску воздушно-сухого угля активированного массой 0,4 г переносят в стеклянную колонку с внутренним диаметром 2,4 см. Высота слоя сорбента составила 2 см. Через слой сорбента пропускают 1 л водного раствора сапонина с концентрацией 0,15 мг/мл. Скорость пропускания поддерживают постоянной 0,5 мл/мин. По окончании процесса сорбент извлекают из колонки и высушивают на воздухе в течение 2 суток. Количество сорбированного сапонина составило 0,3 г/г сорбента. Степень извлечения сапонина из раствора составила 78%.
Пример 2. Навеску сорбента массой 0,2±0,0002 г в воздушно-сухом состоянии заливали в коническую колбу с притертой крышкой раствором сапонина объемом 200 мл с концентрациями 2 г/л. Содержимое колб выдерживали при перемешивании в течение 4 часов до установления равновесия в системе. Время, необходимое для установления равновесия, определяли в предварительных кинетических экспериментах. Затем сорбент отфильтровывали и высушивали на воздухе. Количество сорбированного сапонина составило 0,8 г/г сорбента. Степень извлечения сапонина из раствора составила 40%.
название | год | авторы | номер документа |
---|---|---|---|
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ ГИДРОЛИЗНОГО ЛИГНИНА И ТРИТЕРПЕНОВОГО САПОНИНА | 2021 |
|
RU2769981C1 |
БИОКАТАЛИЗАТОР ДЛЯ ОСАХАРИВАНИЯ КРАХМАЛА, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ, ТВЕРДЫЙ НОСИТЕЛЬ ДЛЯ ИММОБИЛИЗАЦИИ ГЛЮКОАМИЛАЗЫ И СПОСОБ ОСАХАРИВАНИЯ КРАХМАЛА | 1999 |
|
RU2167197C1 |
СОРБЕНТ ДЛЯ ИЗВЛЕЧЕНИЯ АНТИТЕЛ К ИНСУЛИНУ ИЗ БИОЛОГИЧЕСКИХ ЖИДКОСТЕЙ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 1992 |
|
RU2090186C1 |
ФИЛЬТРУЮЩЕ-СОРБИРУЮЩИЙ САМОДЕГАЗИРУЮЩИЙСЯ МАТЕРИАЛ ДЛЯ СРЕДСТВ ИНДИВИДУАЛЬНОЙ ЗАЩИТЫ ОТ ВОЗДЕЙСТВИЯ ФОСФОРОРГАНИЧЕСКИХ СОЕДИНЕНИЙ | 2007 |
|
RU2330717C1 |
СПОСОБ ПОЛУЧЕНИЯ ИММОБИЛИЗОВАННОГО БИОКАТАЛИЗАТОРА И СПОСОБ ПОЛУЧЕНИЯ ВОДНЫХ РАСТВОРОВ АМИДОВ С ИСПОЛЬЗОВАНИЕМ ЭТОГО БИОКАТАЛИЗАТОРА | 2007 |
|
RU2352635C2 |
СОРБЕНТ ДЛЯ УДАЛЕНИЯ СВОБОДНОГО ГЕМОГЛОБИНА ИЗ БИОЛОГИЧЕСКИХ ЖИДКОСТЕЙ | 1992 |
|
RU2035995C1 |
СПОСОБ МОДИФИЦИРОВАНИЯ УГЛЕРОДНОГО ГЕМОСОРБЕНТА И УГЛЕРОДНЫЙ ГЕМОСОРБЕНТ С ИММОБИЛИЗОВАННЫМ БЕЛКОМ | 2011 |
|
RU2452499C1 |
Способ удаления эндотоксинов из биологических жидкостей с помощью ковалентно иммобилизованного лизоцима в качестве лиганда | 2018 |
|
RU2684639C1 |
СПОСОБ ПОЛУЧЕНИЯ ФТОРУГЛЕРОДНОГО ГЕМОСОРБЕНТА И ФТОРУГЛЕРОДНЫЙ ГЕМОСОРБЕНТ (ВНИИТУ-1Ф) | 2011 |
|
RU2477652C1 |
Способ ковалентной иммобилизации лизоцима для последующего применения иммобилизованного лизоцима для снижения бактериальной обсемененности биологических жидкостей | 2018 |
|
RU2694883C1 |
Изобретение относится к фармацевтической промышленности, а именно к композиционному материалу на основе угля обыкновенного и способу его получения. Композиционный материал на основе угля, активированного при температуре 900-1000°С, содержит иммобилизованный на угле тритерпеновый сапонин в количестве не менее 30% от массы угля. Предлагается способ получения композиционного материала на основе угля обыкновенного и тритерпеновых сапонинов. Вышеописанное решение позволяет расширить ассортимент композиционных материалов на основе угля для снижения токсического эффекта при терапевтическом использовании сапонинов. 2 н.п. ф-лы, 3 ил., 2 пр.
1. Композиционный материал на основе угля обыкновенного, активированного при температуре 900-1000°С, отличающийся тем, что дополнительно содержит тритерпеновый сапонин, иммобилизованный на угле, в количестве не менее 30% от массы угля.
2. Способ получения композиционного материала по п. 1, включающий приведение сорбента в контакт с раствором иммобилизуемого вещества, сушку, отличающийся тем, что раствором иммобилизуемого вещества является водный раствор сапонина концентрацией 0,1-0,25 г/л, а сорбционный процесс проходит или в динамических условиях при пропускании раствора через сорбент из расчета 2,5-3 л/г сорбента со скоростью 0,25-0,5 мл/мин, или в статических условиях из расчета 1-2 л/г сорбента при выдерживании в течение не менее 4 часов при комнатной температуре.
US 4289853 А1, 15.09.1981 | |||
Мироненко Н.В | |||
и др | |||
Особенности сорбционного концентрирования сапонина Quillaja Saponaria Molina на природном полимере-хитозане в динамических и статических условиях | |||
//Химия растительного сырья | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Автомобиль-сани, движущиеся на полозьях посредством устанавливающихся по высоте колес с шинами | 1924 |
|
SU2017A1 |
Разборное приспособление для накатки на рельсы сошедших с них колес подвижного состава | 1920 |
|
SU65A1 |
МИРОНЕНКО Н.В | |||
И ДР | |||
Кинетика сорбции тритерпенового сапонина природными энтеросорбентами | |||
Автомобиль-сани, движущиеся на полозьях посредством устанавливающихся по высоте колес с шинами | 1924 |
|
SU2017A1 |
Воронеж, 13-17 сентября 2017 г.) / под ред | |||
В | |||
Ф | |||
Селеменева | |||
- Воронеж : Издательско-полиграфический центр "Научная книга", 2017 | |||
Газогенератор для дров, торфа и кизяка | 1921 |
|
SU376A1 |
ПАРОПЕРЕГРЕВАТЕЛЬ ДЛЯ ЛОКОМОБИЛЬНЫХ КОТЛОВ | 1912 |
|
SU277A1 |
СПОСОБ ПОЛУЧЕНИЯ АКТИВИРОВАННОГО УГЛЯ | 2014 |
|
RU2575654C1 |
ПОРИСТЫЙ УГОЛЬ И СПОСОБЫ ЕГО ПОЛУЧЕНИЯ | 2012 |
|
RU2602116C2 |
Авторы
Даты
2019-02-25—Публикация
2017-12-27—Подача