Способ изготовления тонкопленочного датчика влажности Российский патент 2019 года по МПК G01N27/00 B82B1/00 

Описание патента на изобретение RU2682259C1

Изобретение относится к области использования графена, а именно, формированию электропроводящих структур на полимерной пленке путем восстановления оксида графена (мультиграфена) с высокой точностью, скоростью и надежностью, что может найти применение в изготовлении широкого спектра электронных приборов и других технических изделий, в частности, датчиков влажности резистивного типа.

Известно, что графен является листом графита с толщиной в один атом с экстраординарными свойствами, такими как – колоссальная подвижность носителей, прозрачность и т.д., что способствует развитию новой углеродной электроники. При этом создание пленок графена большой площади является высокотехнологичным и дорогостоящим процессом. Как альтернатива получения материалов с близкими характеристиками является восстановление оксида графена.

Из уровня техники известен способ формирования прозрачных восстановленных оксид графеновых схем с помощью лазерного облучения (см. US №9099376, кл. H01L 21/336; H01L 21/268; H01L 21/02; H01L 29/16, опубл. 04.08.2015). Для получения таких схем суспензию оксида графена наносят на специально подготовленную поверхность стеклянной подложки. Далее, с помощью эксимерного лазера создают проводящие схемы.

Формирование электропроводящих структур на стеклянных негибких подложках может значительно ограничить сферу их применения, кроме того, техническое решение связано с использованием относительно дорогого и сложного в эксплуатации эксимерного лазера.

Известен метод получения тензометрического датчика (см. http://www.myu-inc.jp/myukk/S&M/paper5.html) с применением лазера на двуокиси углерода с мощностью 1,8 Вт. Гибкий тензометрический датчик был сформирован с помощью лазерного восстановления оксида графена на полиэтилентерефталатовой (PET) подложке. Для получения такой структуры суспензия оксида графена была нанесена капельно на гибкую PET-подложку, после высушивания пленка подвергалась лазерному восстановлению с одновременным формированием рисунка.

Недостатком известного метода является использование относительно дорогого и сложного в эксплуатации CO2 лазера. Кроме того, подобное лазерное устройство способно расплавлять нетермостойкие подложки.

Известен способ получения восстановленного оксида графена с последующим изготовлением из него полевого транзистора (см. JP2013035739A, опубл. 21.02.2013), при котором отдельно формируют изолирующую и проводящую электрические части с помощью фемтосекундного лазера с длиной волны 800 нм. И в данном случае техническое решение связано с использованием относительно дорогого и сложного в эксплуатации фемтосекундного лазера.

По способу изготовления датчика влажности (см. RU №2579807, кл. G01N 27/00, B82B 1/00, опубл. 10.04.2016) на медную фольгу осаждают пленку мультиграфена, вырезают из нее заготовку датчика нужной формы и размеров, к местам расположения контактов на заготовке приклеивают стеклянную подложку и сверху наносят защитный слой требуемой формы, стравливают фольгу с незащищенных участков, промывают и высушивают заготовку, а также удаляют защитный слой с электрических контактов.

Известное техническое решение характеризуется сложностью технологического процесса получения датчика, включающего несколько этапов формирования проводящих структур – использование медной фольги, осаждение пленки мультиграфена, приклеивание жесткой стеклянной подложки, нанесение защитного слоя и др., и не способствует развитию повторяемости производства датчиков заявленного типа.

Задача, на решение которой направлено заявленное изобретение, выражается в создании способа изготовления датчика влажности на основе пленок графена, характеризующегося относительной технологической простотой и высокой повторяемостью и стабильностью получаемых на его основе датчиков влажности резистивного типа.

Технический эффект, получаемый при решении поставленной задачи, выражается в формировании электропроводящих структур на полимерной пленке путем восстановления оксида графена с помощью полупроводникового лазера. Кроме того, решение может существенно снизить себестоимость изготовления изделий на основе восстановленного оксида графена.

Для решения поставленной задачи способ изготовления тонкопленочного датчика влажности резистивного типа основан на создании электропроводящих структур на гибкой полимерной пленке, для чего на поверхность полимерной подложки формируется пленка оксида графена путем нанесения водной суспензии оксида графена и последующей ее сушки при нормальных условиях, на поверхности подготовленной полимерной пленки с подложкой посредством полупроводникового лазера с длиной волны 430 нм облучается электропроводящая дорожка электродов. Кроме того, на электропроводящую структуру дополнительно нанесена защитная пленка на основе суспензии оксида графена. Кроме того, электропроводящая дорожка электродов имеет выводы на основе токопроводящей пасты.

Сопоставительный анализ признаков заявленного решения с признаками аналога свидетельствует о соответствии заявленного решения критерию «новизна».

Совокупность признаков изобретения обеспечивает решение заявленной технической задачи, а именно, создание надежного и стабильного датчика резистивного типа на основе графеновой пленки.

Известно, что оксид графена (ОГ) получают и используют в виде суспензии, т.к. жидкая основа позволяет наносить его на различные поверхности. Причем, наличие кислородных групп в ОГ превращает его в диэлектрика, что, в свою очередь, не позволяет использовать в качестве проводниковых материалов. Процесс избавления от кислородсодержащих групп и молекул, так называемое «восстановление», позволяет увеличить проводимость до нужных величин для использования в электронных системах.

Заявленное техническое решение иллюстрируется чертежом, где на фигуре показан общий вид датчика влажности на основе оксида графена (1) и восстановленного оксида графена (2).

Для осуществления способа используются оксид графена в водной суспензии, например, с концентрацией 5 мг/мл; лазерное устройство полупроводникового типа, например, с длиной волны 430 нм; полимерная пленка, используемая в качестве подложки, например, на основе полиэстера или полиэтилентерефталата; устройство нанесения слоя суспензии оксида графена на полимерную подложку, например, автоматическая пипетка с объемом 1 мкл.

Выбор лазера полупроводникового типа для формирования электропроводящих структур на полимерной пленке объясняется тем, что использование подобных лазерных устройств за счет маломощности излучения (в среднем 2,5 Вт) и длины волны, близкой к ультрафиолетовой части спектра, позволяет без сильного нагрева и повреждения полимерной подложки проводить восстановление пленки оксида графена (см. https://www.sciencedirect.com/science/article/pii/S0008622315305182).

Заявленный способ осуществляется следующим образом.

Для создания пленки оксида графена на полимерной подложке суспензию оксида графена наносят на поверхность подложки определенной формы капельным методом с помощью автоматической пипетки. При этом форма подложки определяется предварительно в зависимости от производственной программы, например, при изготовлении цельных изделий форма и размеры заготовки соответствует форме и размеру изготавливаемого изделия. Далее, подготовленная подложка направляется на сушку, которая осуществляется при нормальных условиях в темном боксе в течение 24 часов.

Получаемую пленку закрепляют на рабочем столике лазерного устройства, например, оснащенного блоком управления геометрией детали. Предварительный чертеж обжига загружается в блок управления лазерного устройства, по которому производится облучение на поверхности графеновой пленки (см. фиг.).

После завершения процесса лазерной обработки поверхности пленки оксида графена, восстановленная часть приобретает видимый темный цвет по сравнению с невосстановленной частью. В результате дорожка из восстановленного графена формирует электропроводящую структуру на полимерной пленке. Причем, получаемая пленка не требует процедуры постобработки.

Таким образом, способ позволяет существенно снизить временные затраты, уменьшить технологические этапы изготовления различных структур на базе восстановленного оксида графена, что уменьшает себестоимость производства.

Лабораторными испытаниями установлено, что проводимость ОГ с ростом уровня относительной влажности RH от 30 до 70 % возрастает почти в 3 раза. При прогонке RH в обратном направлении наблюдается явление слабого гистерезиса проводимости. Кроме того, определено влияние света на чувствительность датчика влажности.

Нанесение защитных пленок оксида графена на область структуры датчика влажности, улучшает отклик и время восстановления. Зависимость сопротивления от влажности окружающей среды показывает гистерезис, а дополнительный слой пленки ОГ уменьшает величину гистерезиса.

Кроме того, для выводов к измерителю сопротивления от вновь сформированной электропроводящей дорожки электродов используют токопроводящую пасту, например, полимерную серебросодержащую пасту типа ПСП-2.

Таким образом, полученные результаты показывают, что датчики влажности на основе пленок оксида графена с применением лазерного восстановления обладают хорошей повторяемостью и стабильностью. Кроме того, техническое решение характеризуется повышением безопасности и технологичности процесса восстановления оксида графена.

Похожие патенты RU2682259C1

название год авторы номер документа
Способ изготовления гибкого датчика влажности 2021
  • Смагулова Светлана Афанасьевна
  • Евсеев Захар Иванович
  • Николаев Данил Валериевич
  • Шарин Петр Петрович
RU2764380C1
Способ формирования электропроводящих слоев и структур различной конфигурации из чешуек восстановленного оксида графена (мультиграфена) 2022
  • Васильева Федора Дмитриевна
  • Смагулова Светлана Афанасьевна
  • Шарин Петр Петрович
RU2794890C1
Способ изготовления матричного биосенсора на основе восстановленного оксида графена и матричный биосенсор на полимерной подложке 2019
  • Нелюб Владимир Александрович
  • Орлов Максим Андреевич
  • Калинников Александр Николаевич
  • Бородулин Алексей Сергеевич
  • Комаров Иван Александрович
  • Антипова Ольга Михайловна
  • Стручков Николай Сергеевич
RU2745663C1
СПОСОБ ИЗГОТОВЛЕНИЯ БИОЛОГИЧЕСКОГО СЕНСОРА НА ОСНОВЕ ОКСИДА ГРАФЕНА И БИОЛОГИЧЕСКИЙ СЕНСОР НА ГИБКОЙ ПОДЛОЖКЕ 2018
  • Комаров Иван Александрович
  • Стручков Николай Сергеевич
  • Антипова Ольга Михайловна
  • Калинников Александр Николаевич
  • Нелюб Владимир Александрович
  • Бородулин Алексей Сергеевич
RU2697701C1
СПОСОБ ИЗГОТОВЛЕНИЯ ГИБКОГО ДАТЧИКА ДЕФОРМАЦИИ 2023
  • Курцевич Екатерина Андреевна
  • Коголев Дмитрий Анатольевич
  • Фаткуллин Максим Ильгизович
  • Зиновьев Алексей Леонидович
  • Рауль Давид Родригес Контрерас
  • Постников Павел Сергеевич
RU2811892C1
ГАЗОАНАЛИТИЧЕСКИЙ МУЛЬТИСЕНСОРНЫЙ ЧИП НА ОСНОВЕ ГРАФЕНА И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2021
  • Рабчинский Максим Константинович
  • Варежников Алексей Сергеевич
  • Сысоев Виктор Владимирович
  • Рыжков Сергей Александрович
  • Столярова Дина Юрьевна
  • Соломатин Максим Андреевич
  • Савельев Станислав Даниилович
  • Кириленко Демид Александрович
  • Стручков Николай Сергеевич
  • Брунков Павел Николаевич
  • Павлов Сергей Игоревич
RU2775201C1
Элемент резистивной памяти 2019
  • Иванов Артем Ильич
  • Антонова Ирина Вениаминовна
  • Соотс Регина Альфредовна
RU2714379C1
ГАЗОАНАЛИТИЧЕСКИЙ МУЛЬТИСЕНСОРНЫЙ ЧИП НА ОСНОВЕ ФОСФОРИЛИРОВАННОГО ГРАФЕНА И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2023
  • Рабчинский Максим Константинович
  • Сысоев Виктор Владимирович
  • Рыжков Сергей Александрович
  • Стручков Николай Сергеевич
  • Соломатин Максим Андреевич
  • Варежников Алексей Сергеевич
  • Савельев Святослав Даниилович
  • Габрелян Владимир Сасунович
  • Столярова Дина Юрьевна
  • Кириленко Демид Александрович
  • Саксонов Александр Александрович
  • Павлов Сергей Игоревич
  • Брунков Павел Николаевич
RU2814054C1
Газовый сенсор и газоаналитический мультисенсорный чип на основе графена, функционализированного карбонильными группами 2020
  • Рабчинский Максим Константинович
  • Варежников Алексей Сергеевич
  • Рыжков Сергей Александрович
  • Байдакова Марина Владимировна
  • Шнитов Владимир Викторович
  • Брунков Павел Николаевич
  • Соломатин Максим Андреевич
  • Емельянов Алексей Владимирович
  • Сысоев Виктор Владимирович
RU2745636C1
ГАЗОВЫЙ ДЕТЕКТОР НА ОСНОВЕ АМИНИРОВАННОГО ГРАФЕНА И НАНОЧАСТИЦ ОКСИДОВ МЕТАЛЛОВ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2021
  • Рабчинский Максим Константинович
  • Варежников Алексей Сергеевич
  • Сысоев Виктор Владимирович
  • Стручков Николай Сергеевич
  • Столярова Дина Юрьевна
  • Соломатин Максим Андреевич
  • Антонов Григорий Алексеевич
  • Рыжков Сергей Александрович
  • Павлов Сергей Игоревич
  • Кириленко Демид Александрович
RU2776335C1

Иллюстрации к изобретению RU 2 682 259 C1

Реферат патента 2019 года Способ изготовления тонкопленочного датчика влажности

Использование: для формирования электропроводящих структур на полимерной пленке. Сущность изобретения заключается в том, что способ изготовления тонкопленочного датчика влажности резистивного типа основан на создании электропроводящих структур на гибкой полимерной пленке, для чего, на поверхности полимерной подложки формируется пленка оксида графена путем нанесения водной суспензии оксида графена и последующей ее сушки, далее, на поверхности подготовленной полимерной подложки посредством полупроводникового лазера облучается электропроводящая дорожка электродов. 2 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 682 259 C1

1. Способ изготовления тонкопленочного датчика влажности, характеризующийся тем, что на гибкой полимерной подложке создают графеновую пленку путем нанесения водной суспензии оксида графена и последующей ее сушки, на которой формируют электропроводящую структуру, для чего посредством полупроводникового лазера с длиной волны 430 нм на поверхности подготовленной графеновой пленки с подложкой облучают электропроводящую дорожку электродов.

2. Способ изготовления тонкопленочного датчика влажности по п. 1, отличающийся тем, что на электропроводящую структуру дополнительно нанесена защитная пленка из оксида графена.

3. Способ изготовления тонкопленочного датчика влажности по пп. 1 и 2, отличающийся тем, что электропроводящая дорожка электродов имеет выводы на основе токопроводящей пасты.

Документы, цитированные в отчете о поиске Патент 2019 года RU2682259C1

0
SU160838A1
СПОСОБ ИЗГОТОВЛЕНИЯ ДАТЧИКА ВЛАЖНОСТИ 2014
  • Федоров Вячеслав Николаевич
  • Попов Василий Иванович
  • Смагулова Светлана Афанасьевна
RU2579807C1
ПОЛИМЕРНАЯ ВЛАГОЧУВСТВИТЕЛЬНАЯ КОМПОЗИЦИЯ ДЛЯ ДАТЧИКОВ ВЛАЖНОСТИ РЕЗИСТИВНОГО ТИПА 1994
  • Ромашкова К.А.
  • Снит Т.С.
  • Гусинская В.А.
  • Мамут Н.Ю.
  • Кудрявцев В.В.
  • Лысков Н.С.
RU2109778C1
CN 104958073 A, 07.10.2015
US 20170023508 A1, 26.01.2017.

RU 2 682 259 C1

Авторы

Винокуров Павел Васильевич

Филиппов Иван Михайлович

Алексеев Айыысхан Иванович

Капитонов Альберт Николаевич

Смагулова Светлана Афанасьевна

Даты

2019-03-18Публикация

2018-06-01Подача