Способ получения фосфорномолибденовых кислот Российский патент 2019 года по МПК C01B25/16 C01G39/00 

Описание патента на изобретение RU2685207C1

Изобретение относится к области неорганической химии, в частности, к технологии получения фосфорномолибденовых кислот, используемых в производстве гетерогенных катализаторов гидроочистки нефтяных фракций.

Известен способ получения фосфорномолибденовой кислоты путем взаимодействия триоксида молибдена с метафосфорной кислотой в присутствии щавелевой кислоты при температуре 150-200 °С и давлении 15000-20000 атм. SU 637327 А1, опубл.15.12.1978.

Известен способ получения гетерополикислоты состава H6P2Mo18O62, в котором триоксид молибдена предварительно подвергают механохимической активации, а затем растворяют активированный триоксид молибдена в фосфорной кислоте при температуре 40-100°С и выдерживают в течение не менее 20 дней. RU 2019513 С1, опубл. 15.09.1994.

К недостаткам известных способов можно отнести сложность применяемых технологий, связанных с использованием высокого давления и высокой продолжительности осуществления синтеза.

Наиболее близким к предлагаемому изобретению относится способ получения фосфофорномолибденовой кислоты путем взаимодействия триоксида молибдена с фосфорной кислотой при нагревании и перемешивании в течение 5 ч, затем охлаждении, фильтрации, упаривания раствора с последующим выделением продукта. SU 1039875 А, опубл. 07.09.1983.

Недостатком данного способа является то, что используемый значительный избыток фосфорной кислоты приводит к получению продукта, состав которого зависит от степени упаривания реакционной смеси, и может меняться по отношению молибдена к фосфору.

Техническая задача, решаемая заявленным изобретением, заключается в разработке способа получения фосфорномолибденовых кислот с наибольшим содержанием Н7РМo11О39 и Н5РМo9О32 кислот при минимальном содержании или отсутствии примеси фосфорной кислоты, обеспечивающего содержание МoО3 в прокаленном продукте от 70,3 до 92,5 масс%.

Технический результат от реализации заявленного изобретения заключается в повышении содержания фосфорномолибденовых кислот Н7РМo11О39 и Н5РМo9О32 без примеси фосфорной кислоты за счет варьирования концентрации исходной фосфорной кислоты и сокращения продолжительности взаимодействия оксида молибдена и фосфорной кислоты.

Технический результат достигается тем, что, согласно изобретению, оксид молибдена смешивают с водным раствором 0,28-1,86 %-ной фосфорной кислоты в мольном отношении МoО33PO4=12:1, полученный раствор кипятят в течение 5-10 мин при непрерывном перемешивании сжатым воздухом, охлаждают, отделяют раствор от непрореагировавшего оксида молибдена и упаривают. Упаривание раствора ведут под вакуумом при температуре 70-80 °С, давлении 75-150 мбар.

Изобретение иллюстрируется примерами:

Пример 1.

Пример описывает способ получения фосфорномолибденовых кислот (ФМК) из оксида молибдена и фосфорной кислоты.

Процесс получения фосфорномолибденовых кислот состоит из следующих стадий: кипячение оксида молибдена (МoО3) в растворе фосфорной кислоты, охлаждение, отделение раствора от непрореагировавшего оксида молибдена и упаривание раствора.

В коническую колбу объемом 1 л помещают 166,7 г оксида молибдена и прибавляют 510 мл 1,86 %-ного раствора фосфорной кислоты (500 мл Н2О + 6,58 мл 85 % - ной Н3РО4). Смесь кипятят в течение 10 мин при постоянном перемешивании потоком сжатого воздуха. После охлаждения до комнатной температуры осадок непрореагировавшего оксида молибдена отделяют от раствора ФМК фильтрованием под вакуумом. Раствор упаривают досуха на роторном испарителе для получения кристаллической кислоты (сухого вещества). Условия проведения упаривания: температура 70-80 °С, давление 75-150 мбар. В случае изменения цвета раствора в процессе упаривания в колбу по каплям добавляют при перемешивании раствор 30 % -ной Н2О2 до приобретения прежней желто-оранжевой окраски.

После упаривания получают продукт массой 86,7 г, который на 79% состоит из следующих фосфорномолибденовых кислот, масс%: 20,0 Н7РМo11О39, 67,0 Н5РМo9О32, 7,0 Н6Р2Мо18О62, 6,0 Н3РМo12О40. Содержание МoО3 в прокаленном продукте составляет 70,3 масс%.

Пример 2.

Пример описывает способ получения фосфорномолибденовых кислот из оксида молибдена и фосфорной кислоты. Стадии получения ФМК аналогичны примеру 1, но смесь оксида молибдена и фосфорной кислот кипятят в течение 5 мин, а осадок непрореагировавшего оксида молибдена отделяют центрифугированием.

Для получения 68,6 г продукта, который на 81 % состоит из следующих фосфорномолибденовых кислот, масс%:18,0 Н7РМo11О39, 72,0 Н5РМo9О32, 3,0 Н6Р2Мо18O62, 7,0 Н3РМo12О40, требуется 100,0 г МoО3 и 506 мл 1,12 %-ного раствора фосфорной кислоты (500 мл Н2О + 3,95 мл 85 % - ной Н3РО4). Содержание МoО3 в прокаленном продукте составляет 74,0 масс%.

Пример 3.

Пример описывает способ получения фосфорномолибденовых кислот из оксида молибдена и фосфорной кислоты. Стадии получения ФМК аналогичны примеру 2.

Для получения 61,8 г продукта, который на 92 % состоит из следующих фосфорномолибденовых кислот, масс%:17,0 Н7РМo11О39, 68,0 Н5РМo9О32, 4,0 Н6Р2Мо18О62, 11,0 Н3РМo12О40, требуется 71,4 г МoО3 и 504 мл 0,80 % -ного раствора фосфорной кислоты (500 мл Н2О + 2,82 мл 85 %-ной Н3РО4). Содержание МoО3 в прокаленном продукте составляет 83,3 масс%.

Пример 4.

Пример описывает способ получения фосфорномолибденовых кислот из оксида молибдена и фосфорной кислоты. Стадии получения ФМК аналогичны примеру 2.

Для получения 39,2 г продукта, который на 100 % состоит из следующих фосфорномолибденовых кислот, масс%:14,0 Н7РМo11О39, 58,0 Н5РМo9О32, 1,0 Н6Р2Мо18О62, 27,0 Н3РМo12О40, требуется 41,7 г МoО3 и 503 мл 0,47 % - ного раствора фосфорной кислоты (500 мл Н2О + 1,64 мл 85 %-ной Н3РО4). Содержание МoО3 в прокаленном продукте составляет 92,0 масс%.

Пример 5.

Пример описывает способ получения фосфорномолибденовых кислот из оксида молибдена и фосфорной кислот. Стадии получения ФМК аналогичны примеру 2 .

Для получения 33,5 г продукта, который на 100 % состоит из следующих фосфорномолибденовых кислот, масс%:16,0 Н7РМo11О39, 64,0 Н5РМo9О32, 2,0 Н6Р2Мо18О62, 18,0 Н3РМo12О40 требуется 33,3 г МoО3 и 502 мл 0,38 % - ного раствора фосфорной кислоты 0,38 % (500 мл Н2О + 1,32 мл 85 %-ной Н3РО4). Содержание МoО3 в прокаленном продукте составляет 92,3 масс%.

Пример 6.

Пример описывает способ получения фосфорномолибденовых кислот из оксида молибдена и фосфорной кислоты. Стадии получения ФМК аналогичны примеру 2.

Для получения 26,1 г продукта, который на 100 % состоит из следующих фосфорномолибденовых кислот, масс%:15,0 Н7РМo11О39, 70,0 Н5РМo9О32, 1,0 Н6Р2Мо18О62, 14,0 Н3РМo12О40 требуется 25,0 г МoО3 и 501 мл 0,28 % - ного раствора фосфорной кислоты (500 мл Н2О + 1,00 мл 85 %-ной Н3РО4). Содержание МoО3 в прокаленном продукте составляет 92,5 масс%.

В таблице приведен состав фосфорномолибденовых кислот, полученных заявляемым способом, в зависимости от исходной концентрации фосфорной кислоты. Наибольший выход фосфорномолибденовой кислоты Н5РМo9О32 наблюдается при использовании в процессе синтеза фосфорномолибденовой кислоты фосфорной кислоты с концентрацией 0,28-0,47 % (примеры 4-6).

Описанный в примерах 4-6 способ позволяет получать фосфорномолибденовые кислоты без примеси фосфорной кислоты.

Наибольший выход фосфорномолибденовой кислоты Н7РМo11О39 наблюдается при использовании в процессе синтеза фосфорномолибденовой кислоты фосфорной кислоты с концентрацией 0,80-1,86 % (примеры 1-3).

Похожие патенты RU2685207C1

название год авторы номер документа
КАТАЛИЗАТОР ГИДРООЧИСТКИ ДИЗЕЛЬНЫХ ФРАКЦИЙ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2014
  • Логинова Анна Николаевна
  • Круковский Илья Михайлович
  • Михайлова Янина Владиславовна
  • Фадеев Вадим Владимирович
  • Исаева Екатерина Алексеевна
  • Леонтьев Алексей Викторович
RU2566307C1
СПОСОБ ПОЛУЧЕНИЯ ГЕТЕРОПОЛИКИСЛОТЫ СОСТАВА 1992
  • Максимов Г.М.
  • Максимовская Р.И.
  • Кожевников И.В.
  • Молчанов В.В.
  • Буянов Р.А.
  • Гойдин В.В.
RU2019513C1
КАТАЛИЗАТОР ПРЕДГИДРООЧИСТКИ ПРЯМОГОННОЙ БЕНЗИНОВОЙ ФРАКЦИИ В СМЕСИ С БЕНЗИНОМ ВТОРИЧНЫХ ТЕРМИЧЕСКИХ ПРОЦЕССОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ) 2015
  • Логинова Анна Николаевна
  • Круковский Илья Михайлович
  • Михайлова Янина Владиславовна
  • Фадеев Вадим Владимирович
  • Кашкина Елена Ивановна
  • Исаева Екатерина Алексеевна
  • Леонтьев Алексей Викторович
RU2581053C1
Катализатор гидрооблагораживания вакуумного газойля и способы его приготовления (варианты) 2016
  • Логинова Анна Николаевна
  • Морозова Янина Владиславовна
  • Кашкина Елена Ивановна
  • Леонтьев Алексей Николаевич
  • Архипова Ирина Александровна
  • Фадеев Вадим Владимирович
RU2616601C1
Способ приготовления катализатора для процесса гидроочистки прямогонной дизельной фракции 2018
  • Бухтиярова Галина Александровна
  • Власова Евгения Николаевна
  • Демидов Михаил Борисович
  • Делий Ирина Валерьевна
  • Александров Павел Васильевич
RU2706335C1
Катализатор и способ гидрооблагораживания дизельных дистиллятов 2015
  • Бухтиярова Галина Александровна
  • Власова Евгения Николаевна
  • Александров Павел Васильевич
  • Токтарев Александр Викторович
  • Алешина Галина Ивановна
  • Носков Александр Степанович
  • Клейменов Андрей Владимирович
  • Кондрашев Дмитрий Олегович
  • Мирошкина Валентина Дмитриевна
  • Русецкая Кристина Андреевна
  • Кузнецов Сергей Евгеньевич
RU2607925C1
Катализатор и способ очистки жидких углеводородов от общей серы 2019
  • Тюрина Людмила Александровна
  • Тарханова Ирина Геннадиевна
  • Бабаков Евгений Александрович
  • Зеликман Владимир Менделевич
  • Брыжин Александр Александрович
  • Али-Заде Али Гошкар Оглы
RU2693699C1
Состав и способ приготовления катализаторов гидроочистки смеси дизельных фракций 2016
  • Томина Наталья Николаевна
  • Пимерзин Андрей Алексеевич
  • Максимов Николай Михайлович
  • Моисеев Алексей Вячеславович
RU2700712C2
Способ приготовления катализатора гидрокрекинга углеводородного сырья 2017
  • Дик Павел Петрович
  • Перейма Василий Юрьевич
  • Корякина Галина Ивановна
  • Надеина Ксения Александровна
  • Казаков Максим Олегович
  • Климов Олег Владимирович
  • Носков Александр Степанович
RU2662234C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ГИДРООЧИСТКИ НЕФТЯНЫХ ФРАКЦИЙ 2017
  • Бодрый Александр Борисович
  • Усманов Ильшат Фаритович
  • Рахматуллин Эльвир Маратович
  • Тагиров Айдар Шамилевич
  • Илибаев Радик Салаватович
  • Суркова Лидия Васильевна
  • Гариева Гульназ Фаниловна
  • Сараев Антон Николаевич
  • Петров Андрей Вячеславович
  • Вязовцев Юрий Сергеевич
RU2661866C1

Реферат патента 2019 года Способ получения фосфорномолибденовых кислот

Изобретение может быть использовано в производстве гетерогенных катализаторов гидроочистки нефтяных фракций. Для получения фосфорномолибденовых кислот оксид молибдена смешивают с водным раствором 0,28-1,86%-ной фосфорной кислоты в мольном отношении MoO3 к Н3РО4, равном 12:1. Полученный раствор кипятят в течение 5-10 мин при непрерывном перемешивании сжатым воздухом и охлаждают. Отделяют раствор от непрореагировавшего оксида молибдена и упаривают под вакуумом при температуре 70-80°С, давлении 75-150 мбар. Изобретение позволяет повысить выход фосфорномолибденовой кислоты H7PMo11O39, снизить содержание примеси фосфорной кислоты в продукте. 1 з.п. ф-лы, 1 табл., 6 пр.

Формула изобретения RU 2 685 207 C1

1. Способ получения форфорномолибденовых кислот, отличающийся тем, что оксид молибдена смешивают с водным раствором 0,28-1,86%-ной фосфорной кислоты в мольном отношении MoO3 к Н3РО4, равном 12:1, полученный раствор кипятят в течение 5-10 мин при непрерывном перемешивании сжатым воздухом, охлаждают, отделяют раствор от непрореагировавшего оксида молибдена и упаривают.

2. Способ по п. 1, отличающийся тем, что раствор упаривают под вакуумом при температуре 70-80°С, давлении 75-150 мбар.

Документы, цитированные в отчете о поиске Патент 2019 года RU2685207C1

Способ получения фосфорно-молибденовой кислоты 1982
  • Гафарова Альмира Файззрахмановна
  • Бекметова Нина Хусаиновна
  • Курильская Валерия Васильевна
  • Волкова Анна Макаровна
  • Онопченко Жанна Яковлевна
  • Павлова Наталья Викторовна
SU1039875A1
RU 2064436 C1, 27.07.1996
КАТАЛИЗАТОР ДЛЯ ПОЛУЧЕНИЯ 2,3:4,6-ДИИЗОПРОПИЛИДЕН- α -L-СОРБОФУРАНОЗЫ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ 1995
  • Максимов Г.М.
  • Молчанов В.В.
  • Гойдин В.В.
  • Тимофеева М.Н.
  • Максимовская Р.И.
RU2080923C1
US 7939692 B2, 10.05.2011
JP 61155211 A, 14.07.1986.

RU 2 685 207 C1

Авторы

Круковский Илья Михайлович

Шелоумов Алексей Михайлович

Голубев Олег Владимирович

Логинова Анна Николаевна

Фадеев Вадим Владимирович

Даты

2019-04-16Публикация

2018-06-26Подача