СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО СПЛАВА НА ОСНОВЕ НИКЕЛИДА ТИТАНА Российский патент 2019 года по МПК C22C1/08 C22C14/00 

Описание патента на изобретение RU2687386C1

Изобретение относится к металлургии, конкретно к технологии получения пористых металлических материалов, и может использоваться в медицинской имплантологии.

Пористые сплавы на основе никелида титана получают все большее распространение в медицине благодаря их высокой биосовместимости, обусловленной химической инертностью, развитой поверхностью и сходством с живыми тканями по механическим свойствам. В качестве имплантатов пористые сплавы на основе никелида титана способны замещать фрагменты костей, хрящей и других каркасных образований /Медицинские материалы и имплантаты с памятью формы. Гюнтер В.Э., Дамбаев Г.Ц., Сысолятин П.Г. и др. Томск, изд-во Том. ун-та, 1998. 486 с./. В последнее время пористые имплантаты успешно используются как клеточные инкубаторы /Тканевая инженерия и клеточные технологии с использованием пористо-проницаемых инкубаторов из никелида титана. / О.В. Кокорев, В.Э. Гюнтер, Г.Ц. Дамбаев, В.Н. Ходоренко. - Томск: Изд-во МИЦ, 2016. - 150 с./. Пути совершенствования пористых сплавов в значительной степени связаны с оптимизацией их структурных характеристик в направлении повышения эффективности культивации клеточного материала.

Пористый никелид титана получают двумя основными способами: самораспространяющимся высокотемпературным синтезом (СВС) и диффузионным спеканием (ДС). Пористый материал, получаемый метом СВС, обладает широким диапазоном коэффициента пористости, в определенной степени пригоден для оптимизации в отношении равномерности структуры и наличия развитой микроструктуры поверхности, способствующей лучшей прорастаемости клеточных структур. Вместе с тем, пористый материал, получаемый методом спекания из порошка никелида титана, обладает сравнительно лучшими механическими свойствами, что связано с меньшим разбросом размеров зерен и перемычек между ними. Однородность структуры способствует более равномерному распределению деформаций и напряжений, исключая появление локальных перенапряжений. В связи с этим все большее предпочтение отдается способу диффузионного спекания. Это способ в силу плавного протекания процесса обеспечивает более тонкое и воспроизводимое управление параметрами материала.

Среди аналогов заявляемому способу получения пористого сплава на основе никелида титана путем диффузионного спекания может быть приведен способ, описанный в публикации / И.В. Митрофанова, Н.В. Артюхова, Ю.Ф. Ясенчук. Структура и параметры эффекта памяти формы никелида титана, изготовленного диффузионным спеканием // Сборник материалов XIV Российской научной студенческой конференции «ФИЗИКА ТВЕРДОГО ТЕЛА», Томск, Россия. 13-15 мая 2014 г. - С. 67-70./. Способ получения пористого сплава на основе никелида титана включает спекание шихты из порошка никелида титана марки ПВ-Н55Т45С в электровакуумной печи. Исследованные образцы получали при температуре 1270°С и времени выдержки 5-6 мин. Их основным преимуществом является высокая концентрация основной фазы - TiNi, играющей определяющую роль в диапазоне пластичности и памяти формы. Эффекты памяти формы и высокой пластичности обусловлены обратимой перестройкой отдельных областей кристаллической решетки между двумя состояниями: мартенситным В19' и аустенитным В2. Установлено, что в получаемых образцах концентрация фазы TiNi достигает 90%, что позволяет вышеуказанным эффектам проявляться в полной мере.

Усовершенствование технологии получения диффузионно-спеченного биосовместимого сплава связывается с улучшением соответствия комплекса характеристик (пористость, прочность, однородность структуры, удельная поверхность) требованиям оптимального функционирования в качестве инкубатора клеточных структур. Исследования в этом направлении привели к созданию способа получения пористого сплава на основе никелида титана по патенту РФ №651846 по заявке 2017124572 от 10.07.2017. опубл. 24.04.18, бюл. №12. Данный способ включает спекание уплотненной шихты из порошка никелида титана в электровакуумной печи. При осуществлении данного способа было впервые для сплавов на основе никелида титана обнаружено появление на стенках пор террасовидных структур. Ширина ступеней составляет в среднем 0,4-0,5 мкм при высоте излома, достигающей 0,25 мкм. За счет шероховатости интегральная поверхность пористого материала может заметно увеличиваться. Например, принимая ступени с размерами 0,25×0,5 мкм (то есть с соотношением ширины к высоте 2:1) за катеты, а соединяющую их исходно гладкую образующую - за гипотенузу, можно убедиться, что приращение площади за счет шероховатости составляет

Такое увеличение удельной поверхности существенно повышает характеристики биосовместимости пористого материала. Помимо простого геометрического приращения площади, шероховатость создает градиенты молекулярных полей на гребнях и впадинах, что способствует адгезии биологических молекул.

Вместе с тем, известный способ обладает рядом недостатков, обусловленных неполнотой представлений о существенных для положительного результата особенностях структуры и состава исходного порошка и их трансформации в процессе спекания. К недостаткам известного способа относятся: сложный и продолжительный процесс получения пористого материала, а также слабая повторяемость его характеристик. В известном способе спекание приходится производить дважды: на первом этапе в течение 40 минут при температуре 1200°С, затем после естественного остывания повторно в течение 40 минут при температуре 1250°С. Двухэтапный процесс требует больших затрат времени и электроэнергии, а выбор исходного материала и выбор степени его уплотнения (от 65 до 75%) носят практически интуитивный характер.

Преодоление указанных недостатков потребовало решения задачи выявления оптимальных структурных особенностей исходного материала и оптимальных параметров режима спекания для получения материала с террасовидной поверхностью пор в целях стабильного обеспечения повышенной микрошероховатости и, соответственно, улучшенной биосовместимости пористого сплава на основе никелида титана. Технический результат заявляемого способа - сокращение времени и энергозатрат на осуществление процесса и улучшение повторяемости характеристик получаемого материала.

Технический результат достигается тем, что при осуществлении способа получения пористого сплава на основе никелида титана, включающего спекание уплотненной шихты из порошка никелида титана в электровакуумной печи, отличие состоит в том, что в качестве шихты выбирают порошок никелида титана с концентрацией мартенситной фазы не менее 34%, область плотностей после насыпки ограничивают в пределах 65-70%, а спекание производят однократно в течение 15 минут при температуре 1260±5°С.

Для пояснения сущности изобретения приводятся иллюстрации фиг. 1-2.

На фиг. 1 изображена структура среза зерен исходного порошка, наблюдаемая при различных условиях спекания.

На фиг. 2 изображены типичные примеры террасовидной поверхности пор в образцах пористого материала на основе никелида титана.

Достижимость заявленного результата обусловлена следующим.

1. Выбор в качестве шихты никелид-титанового порошка с концентрацией мартенситной фазы не менее 34% связан с выявленной взаимосвязью между внутренней структурой спекаемых зерен порошка и формой, приобретаемой поверхностью зерен в результате спекания. Данная взаимосвязь заключается в том, что топология поверхности зерна, формирующаяся в результате спекания, определяется микроскопическим строением лежащего под ним массива. Условием для формирования террасовидной поверхности является регулярное чередование микрокристаллов различной структуры. Этот факт подтвержден сопоставлением электронно-микроскопических изображений поверхности ячеек пористого материала и их поперечного сечения.

Основным ресурсом поставки никелид-титанового порошка для нужд порошковой металлургии является порошок марки ПВ-Н55Т45, выпускаемый ПАО «Тулачермет» с использованием технологии гидридно-кальциевого восстановления. При типичных условиях синтеза в порошке присутствуют зерна губчатой и компактной структуры, содержащие преимущественно мартенситные и аустенитные кристаллы TiNi, а также Ti2Ni и др. Внутренняя структура зерен может быть различной. Конкуренция в формировании кристаллов мартенсита и аустенита в зависимости от условий роста приводит к их термодинамически равновесному чередованию. Оно может быть представлено хаотизированным конгломератом (фиг. 1а), регулярной структурой (фиг. 1б) или взвесью кристаллов одной фазы в матрице из другой (фиг. 1в).

Среди различных соединений никеля с титаном соединение Ti2Ni имеет наиболее низкую начальную температуру плавления - 955°С. Текучесть этого соединения отвечает за образование первичных спаек между зернами порошка. С повышением температуры начинаются процессы диффузии более тугоплавких соединений, однако, согласно данным электронной микроскопии, внутренняя структура зерен порошка в основном сохраняет подобие исходной структуре. Подходящая для формирования террасовидной поверхности структура с регулярным чередованием кристаллов мартенсита и аустенита проявляется в определенном диапазоне их процентных соотношений. В наиболее часто применяемом промышленном порошке ПВ-Н55Т45 средняя концентрация мартенсита и аустенита составляет 34% и 29% соответственно с некоторым разбросом, зависящим от наличия примесей. За определенными пределами условия формирования регулярной структуры нарушаются. Анализ различных модификаций порошка показал, что для существования регулярности кристаллической структуры необходимо присутствие в порошке не менее 34% мартенситной фазы. Верхний предел концентрации мартенсита установлению не подлежит, поскольку в реальных порошках не наблюдается превышения концентрации мартенсита до уровня, нарушающего регулярность структуры.

2. Выбор температурно-временного режима спекания в виде 15 минут при температуре 1260±5°С определен многочисленными экспериментами. В отличие от способа-прототипа, предложенное повышение температуры в среднем на 10 градусов - до 1260°С от исходных 1250°С - резко ускоряет расплавление различных фаз и диффузию продуктов фазовых превращений на поверхности и в глубине зерен. Установлено, что для указанных температур время выдержки 15 минут достаточно, чтобы произошло подплавление фазы Ti2Ni, слипание зерен и модификация поверхностных атомарных слоев в соответствии с рисунком чередования кристаллов в подстилающем объеме. Увеличение времени выдержки сверх указанных 15 минут сопровождается массовым оплавлением зерен и деградацией ступенчатой поверхностной структуры. Таким образом, вместо двух этапов по 40 минут и этапа охлаждения предлагается один этап продолжительностью 15 минут, при этом затраты времени и электроэнергии сокращаются в несколько раз. Более того, при интуитивном выборе исходного материала и параметров режима получение пористого материала с желаемыми свойствами методом проб и ошибок приводило бы к кратному увеличению затрат. Допускаемый разброс температур ±5°С связан с погрешностями измерения, а также градиентами тепловых полей в печи.

3. Ограничение плотности шихты интервалом 65-70% является более жестким, чем для способа-прототипа (65-75%), поскольку оказалось, что чрезмерно уплотненная шихта имеет тенденцию к монолитизации при выбранном температурном режиме.

Заявляемые отличительные признаки выявлены на основе разносторонних исследований, отличаются от ранее известных и не следуют явным образом из области техники, что подтверждает соответствие технического решения критериям новизны и изобретательского уровня.

Способ получения пористого материала на основе никелида титана включает спекание уплотненной шихты из порошка никелида титана в электровакуумной печи. В качестве шихты выбирают порошок никелида титана с концентрацией мартенситной фазы не менее 34%. Шихту, засыпанную в форму, трамбуют до плотности 65-70%. Формой обычно служит кварцевая труба. Спекание производят в один прием течение 15 минут при температуре 1260±5°С. Параметры режима обеспечивают с высокой степенью воспроизводимости получать пористый материал с развитой террасовидной поверхностью пор, обусловленной выходом к поверхности регулярно чередующихся кристаллических слоев мартенсита и аустенита. Типичные микрофотографии террасовидной поверхности пор приведены на фиг. 2. Методом ртутной порометрии установлено, что наличие указанных структурных элементов субмикронных размеров дает вклад в удельную поверхность порядка 35%.

Получаемый по заявляемому способу пористый материал с увеличенной за счет субмикронного рельефа удельной поверхностью может найти применение в различных областях медицинской имплантологии.

Похожие патенты RU2687386C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО СПЛАВА НА ОСНОВЕ НИКЕЛИДА ТИТАНА 2017
  • Аникеев Сергей Геннадьевич
  • Ходоренко Валентина Николаевна
  • Гюнтер Виктор Эдуардович
  • Артюхова Надежда Викторовна
  • Гарин Александр Сергеевич
  • Ясенчук Юрий Феодосович
RU2651846C1
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО МАТЕРИАЛА НА ОСНОВЕ НИКЕЛИДА ТИТАНА 2020
  • Аникеев Сергей Геннадьевич
  • Артюхова Надежда Викторовна
  • Кафтаранова Мария Ивановна
  • Ходоренко Валентина Николаевна
  • Моногенов Александр Николаевич
  • Сенатрева Валентина Владимировна
  • Волочаев Михаил Николаевич
  • Кокорев Олег Викторович
  • Гарин Александр Сергеевич
  • Мамазакиров Ойбек Рустамович
  • Гюнтер Виктор Эдуардович
RU2732716C1
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО ПОКРЫТИЯ НА ИЗДЕЛИЯХ ИЗ МОНОЛИТНОГО НИКЕЛИДА ТИТАНА 2021
  • Аникеев Сергей Геннадьевич
  • Артюхова Надежда Викторовна
  • Ходоренко Валентина Николаевна
  • Промахов Владимир Васильевич
  • Яковлев Евгений Витальевич
  • Марков Алексей Борисович
  • Шабалина Анастасия Валерьевна
  • Волочаев Михаил Николаевич
RU2785958C1
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО СПЛАВА НА ОСНОВЕ НИКЕЛИДА ТИТАНА 2022
  • Аникеев Сергей Геннадьевич
  • Артюхова Надежда Викторовна
  • Кафтаранова Мария Ивановна
  • Ходоренко Валентина Николаевна
  • Мамазакиров Ойбек
  • Шабалина Анастасия Валерьевна
  • Волочаев Михаил Николаевич
  • Промахов Владимир Васильевич
  • Пахолкина София
  • Гюнтер Виктор Эдуардович
RU2798496C1
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ ПОРИСТОГО НИКЕЛИДА ТИТАНА 2007
  • Гюнтер Виктор Эдуардович
  • Ходоренко Валентина Николаевна
  • Ясенчук Юрий Феодосович
RU2356966C2
СПОСОБ ПОЛУЧЕНИЯ ЛИТЬЕВЫХ ИЗДЕЛИЙ ИЗ СПЛАВА НА ОСНОВЕ НИКЕЛИДА ТИТАНА 2015
  • Ясенчук Юрий Феодосович
  • Артюхова Надежда Викторовна
  • Гюнтер Виктор Эдуардович
  • Прокофьев Валерий Юрьевич
RU2593255C1
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО НИКЕЛИДА ТИТАНА 2008
  • Гюнтер Виктор Эдуардович
  • Моногенов Александр Николаевич
  • Олесова Валентина Николаевна
  • Артюхова Надежда Викторовна
  • Ясенчук Юрий Феодосович
RU2394112C2
ПОРИСТЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛИДА ТИТАНА ДЛЯ МЕДИЦИНСКИХ ИМПЛАНТАТОВ 2013
  • Гюнтер Виктор Эдуардович
  • Ходоренко Валентина Николаевна
  • Кафтаранова Мария Ивановна
RU2557192C2
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО СПЛАВА НА ОСНОВЕ НИКЕЛИДА ТИТАНА 2014
  • Гюнтер Виктор Эдуардович
  • Ходоренко Валентина Николаевна
  • Кафтаранова Мария Ивановна
  • Аникеев Сергей Геннадьевич
  • Кокорев Олег Викторович
RU2566234C2
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВОГО СПЛАВА TiNi С ВЫСОКИМ УРОВНЕМ МЕХАНИЧЕСКИХ СВОЙСТВ 2016
  • Касимцев Анатолий Владимирович
  • Шуйцев Александр Владимирович
  • Маркова Галина Викторовна
  • Юдин Сергей Николаевич
RU2632047C1

Иллюстрации к изобретению RU 2 687 386 C1

Реферат патента 2019 года СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО СПЛАВА НА ОСНОВЕ НИКЕЛИДА ТИТАНА

Изобретение относится к порошковой металлургии, в частности к изготовлению пористых металлических материалов. Может использоваться в медицине для изготовления имплантатов. В качестве шихты выбирают порошок никелида титана с концентрацией мартенситной фазы не менее 34%. Шихту, засыпанную в форму, трамбуют до плотности 65-70%. Спекание производят в электровакуумной печи в один прием течение 15 минут при температуре 1260±5°С. Обеспечивается увеличение удельной поверхности материала, улучшение повторяемости характеристик получаемого материала и улучшение биосовместимости материала. 2 ил.

Формула изобретения RU 2 687 386 C1

Способ получения пористого сплава на основе никелида титана, включающий спекание уплотненной шихты из порошка никелида титана в электровакуумной печи, отличающийся тем, что в качестве шихты используют порошок никелида титана с концентрацией мартенситной фазы не менее 34%, область плотностей после насыпки ограничивают в пределах 65-70%, а спекание производят однократно в течение 15 минут при температуре 1260±5°С.

Документы, цитированные в отчете о поиске Патент 2019 года RU2687386C1

СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО СПЛАВА НА ОСНОВЕ НИКЕЛИДА ТИТАНА 2017
  • Аникеев Сергей Геннадьевич
  • Ходоренко Валентина Николаевна
  • Гюнтер Виктор Эдуардович
  • Артюхова Надежда Викторовна
  • Гарин Александр Сергеевич
  • Ясенчук Юрий Феодосович
RU2651846C1
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО НИКЕЛИДА ТИТАНА 2008
  • Гюнтер Виктор Эдуардович
  • Моногенов Александр Николаевич
  • Олесова Валентина Николаевна
  • Артюхова Надежда Викторовна
  • Ясенчук Юрий Феодосович
RU2394112C2
CN 102534275 A, 04.07.2012
ДЛИННОМЕРНЫЙ СИЛОВОЙ КОНСТРУКЦИОННЫЙ ЭЛЕМЕНТ ТИПА ВЕРТИКАЛЬНОЙ КОЛОННЫ ИЗ ПОЛИМЕРНОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА 2013
  • Нелюб Владимир Александрович
  • Буянов Иван Андреевич
  • Бородулин Алексей Сергеевич
  • Чуднов Илья Владимирович
  • Кириллова Наталья Сергеевна
RU2529206C1
WO 2001087370 A1, 22.11.2001.

RU 2 687 386 C1

Авторы

Аникеев Сергей Геннадьевич

Ходоренко Валентина Николаевна

Гюнтер Виктор Эдуардович

Артюхова Надежда Викторовна

Гарин Александр Сергеевич

Матюнин Александр Николаевич

Даты

2019-05-13Публикация

2018-11-26Подача