СПОСОБ ГИБРИДНОЙ ЛАЗЕРНО-ДУГОВОЙ СВАРКИ С НАПЫЛЕНИЕМ СТАЛЬНЫХ ПЛАКИРОВАННЫХ ТРУБ Российский патент 2019 года по МПК B23K26/348 B23K26/262 B23K31/02 B23K33/00 B21C37/08 

Описание патента на изобретение RU2688350C1

Изобретение относится к сварке металлоконструкций, в частности, к сварке продольных швов сформованной цилиндрической заготовки и может быть использовано при производстве стальных сварных труб большого диаметра с толщиной стенки от 12 до 25 мм и выше до 50 мм с наружным плакирующим слоем, изготовленным из нержавеющей стали марки, например, 08Х18Н10Т или 12Х18Н10Т.

Плакированные стальные трубы широко применяют в нефтегазовой промышленности ввиду воздействия агрессивных сред на поверхность трубы. Одним из способов получения плакированных труб большого диаметра является формовка трубной заготовки из плакированного листового проката с последующей сваркой на трубоэлектросварочном стане. Плакированный листовой прокат получают методом пакетной прокатки - горячей прокатки двух и более слоев металла.

Недостатком данного способа изготовления плакированных труб является то, что сварные швы этих труб сформированы присадочным материалом, который отличается по своему составу от состава плакированного слоя и вследствие этого подвержены ускоренной коррозии.

Известен способ из патента CN 103722346, согласно которому изготавливают стальную биметаллическую трубу с коррозионностойким покрытием методом горячей пакетной прокатки с последующей формовкой трубной заготовки из получившегося листового биметаллического проката и с последующей дуговой сваркой под флюсом продольного шва.

Однако данный способ обладает недостаточной производительностью дуговой сварки, при которой происходит нарушение целостности плакирующего слоя, выраженное в расплавлении плакирующего слоя ввиду обширного теплового воздействия действующей дуги при сварке под флюсом, и перемешивание плакирующего слоя с основным металлом.

Известен способ из патента RU 2108178, согласно которому свариваемую поверхность (плакированный штрипс) очищают от плакирующего слоя, затем формуют трубную заготовку, нагревают двумя и более лазерным лучами свариваемые кромки до температуры плавления и сдавливают для образования прочного сварного соединения с последующей наплавкой плакирующего слоя в виде мелкодисперсного порошка.

Однако в данном способе после сдавливания оплавленных кромок возможно образование превышения (смещения) кромок, что является недопустимым дефектом. Кроме того, затруднительно приложить достаточное сдавливающее усилие для образования качественного сварного соединения при производстве толстостенных труб большого диаметра.

Известен из патента ЕР 1878531 способ гибридной лазерно-дуговой сварки металлических заготовок, покрытых слоем алюминия.

Однако данный способ применяют для труб с малой толщиной стенки от 0,5 до 4 мм и он не подходит для производства стальных сварных труб большого диаметра с толщиной стенки от 12 до 25 мм и выше, а также способ обладает недостаточной производительностью ввиду сварки неплавящимся электродом.

Наиболее близким аналогом заявляемого изобретения является известный из патента RU 2609609 способ сварки труб большого диаметра лазерной и гибридной лазерно-дуговой сваркой, согласно которому применяют гибридную лазерно-дуговою сварку для производства труб большого диаметра.

Недостатком этого изобретения является то, что гибридную лазерно-дуговую сварку ведут со сквозным проплавлением, что приводит к провисанию сварного шва при производстве плакированных труб, что влечет за собой увеличение объема напыляемого металла, значительно снижая производительность, либо приводит к дополнительному этапу дуговой сварки-наплавки для получения валика на уровне плакирующего слоя, также снижая производительность и увеличивая себестоимость.

Техническая проблема, на решение которой направлено заявляемое изобретение, заключается в низкой производительности сварки плакированных труб большого диаметра.

Техническим результатом заявляемого изобретения является повышение производительности сварки за счет уменьшения доли сварного шва по отношению к основному металлу, а также за счет уменьшения доли удаляемого плакированного слоя, подлежащего восстановлению.

Заявляемый технический результат достигается за счет того, что в способе гибридной лазерно-дуговой сварки с напылением стальных плакированных труб на собранные встык с зазором от 0 до 1 мм кромки с разделкой, при которой величина притупления составляет до 70% от толщины стенки трубы без учета толщины плакирующего слоя, а величина наружного скоса кромки выбрана больше толщины плакирующего слоя на 2-3 мм, воздействуют электрической дугой с плавящимся электродом, после чего воздействуют лазерным лучом с мощностью, достаточной для проплавления металла с толщиной меньше величины притупления, выполняя рабочий шов с формированием валика на уровне плакирующего слоя, на рабочий шов наносят защитный наружный слой, а также выполняют внутренний шов.

В способе могут использовать X, Y или U-образную форма разделки.

Защитный наружный слой выполняют из коррозионностойкого покрытия, не уступающего по составу основному плакирующему слою.

Защитный наружный слой могут наносить одним из трех методов: высокоскоростного газопламенного, плазменно-дугового напыления или лазерной наплавкой порошка.

Перед выполнением рабочего шва могут выполнять технологический шов.

Заявляемый способ поясняется с помощью фиг. 1-10, на которых изображены:

Фиг. 1 - симметричная Х-образная кромка;

Фиг. 2 - несимметричная Х-образная кромка;

Фиг. 3 - Y-образная кромка;

Фиг. 4 - вид на свариваемые кромки;

Фиг. 5 - вид на свариваемые кромки, сечение А-А;

Фиг. 6 - вид на свариваемые кромки после выполнения рабочего шва;

Фиг. 7 - вид на свариваемые кромки после выполнения внутреннего шва;

Фиг. 8 - вид на свариваемые кромки после выполнения защитного слоя;

Фиг. 9-10 - примеры разделки кромок.

На фиг. 1-10 позициями 1-15 показаны:

1 - кромка;

2 - притупление;

3 - скос кромки;

4 - плакирующий слой;

5 - дуговая сварочная горелка;

6 - лазерный луч;

7 - рабочий шов;

8 - внутренний шов;

9 - защитный слой;

10 - угол скоса кромки;

11 - толщина пластины;

12 - толщина плакирующего слоя;

13 - величина притупления;

14 - величина внутреннего скоса кромки;

15 - углубление наружного скоса в основной металл.

Способ осуществляют следующим образом.

Используют кромки 1 с формой разделки X, Y или U-образной. Допускается как симметричная, так и несимметричная форма разделки. Величина притупления 2 при разделке кромок 1 составляет до 70% от толщины основного металла, т.е. без учета толщины плакирующего слоя.

Величина наружного скоса 3 кромки больше толщины плакирующего слоя на 2-3 мм - остальное приходится на внутренний скос. Таким образом, объем удаляемого плакированного слоя 4 минимален.

На свариваемые кромки 1 трубной заготовки, собранные встык без зазора или с нормируемым зазором до 1 мм, исключающим проваливание лазерного луча 6 и образование непровара, наносят технологический (сборочный) шов методом дуговой сварки с целью фиксации кромок 1 друг относительно друга для исключения их коробления при последующей сварке. Необходимо отметить, что этап нанесения технологического шва не является обязательным для получения указанного технического результата и может быть исключен. Затем на свариваемые кромки 1 с нанесенным технологическим швом направляют дуговую сварочная горелку 5 с плавящимся электродом. Электрическая дуга расплавляет поверхностный металл, вносит легирующие элементы и выполняет функцию предварительного подогрева. После дуговой сварочной горелки 5 воздействуют лазерным лучом 6, подбирая мощность, достаточную для проплавления около 70% основного металла. Таким образом, соединение кромок 1 с помощью лазерного луча 7 выполняют без сквозного проплавления. Благодаря этому на поверхности рабочего шва 7 формируется валик на уровне плакирующего слоя 4.

Валик необходим для того, чтобы рабочий шов 7 был выше основного металла и приблизительно на уровне плакирующего слоя 4. Если сварку будут выполнять со сквозным проплавлением, то рабочий шов 7 просядет, т.е. будет по уровню ниже основного металла и придется дополнительно наплавлять металл, что это снижает производительность, и увеличивать объем снимаемого плакирующего слоя 4, что также снижает производительность сварки.

Помимо отсутствия сквозного проплавления для формирования валика необходима подача дополнительного присадочного металла в зону сварки. В данном случае это условие выполняется посредством сварочной дуги, плавящей сварочную проволоку -плавящийся электрод.

Вследствие узконаправленного воздействия лазерного луча 6, оплавляющего кромки 1, плакированный слой 4 в прикромочной зоне остается практически невредим.

Затем, после нанесения рабочего шва 7 методом гибридной лазерно-дуговой сварки выполняют внутренний шов 8 методом дуговой сварки под флюсом с частичным переплавлением рабочего шва 7.

Поверх рабочего шва 7 накладывают защитный наружный слой 9 методом высокоскоростного газопламенного, плазменно-дугового напыления или лазерной наплавки порошка. В зависимости от требований и особенностей планирования производства допускается нанесение защитного наружного слоя 9 сразу после рабочего шва 7. В зависимости от количества наружных плакирующих слоев 4 возможно проведение нескольких операций напыления. Для нанесения защитного наружного слоя 9 применяют порошок с высоким содержанием легирующих элементов для формирования коррозионностойкого покрытия или покрытия с химическим составом, аналогичным плакирующему слою 4.

Таким образом, доля готового сварного соединения минимальна, а доля плакированного слоя 4 будет максимальна.

Заявляемый способ обеспечивает получение качественного сварного шва методом гибридной лазерно-дуговой сварки стальных плакированных труб большого диаметра.

Способ опробован на пластинах 11 толщиной 24 мм из конструкционной низколегированной стали класса прочности К60, толщина 12 наружного плакирующего слоя - 3 мм из нержавеющей стали, величина 13 притупления - 17 мм, величина 14 внутреннего скоса - 2,5 мм, угол 10 скоса кромок - 45°. После нанесения технологического шва выполняли сварку рабочего шва в защитной среде аргона и углекислого газа. Ток сварочной дуги составлял 400-500 А, напряжение 34-38 В, мощность лазера 25-30 кВт.

Наружный защитный слой выполняли методом плазменного напыления в три слоя: сила тока - 150-400 А, напряжение 25-50 В, расстояние напыления 120-150 мм.

Внутренний дуговой шов выполняли методом трехдуговой сварки под флюсом, параметры которой указаны в таблице.

Способ был также опробован на примере разделки кромок, показанной на фиг. 10, где угол скоса кромки 10-35°, толщина пластины 11-50 мм, толщина плакирующего слоя 12-5 мм, величина притупления 13-27 мм, величина внутреннего скоса кромки 14-15 мм, углубление 15 наружного скоса в основной металл - 3 мм.

Похожие патенты RU2688350C1

название год авторы номер документа
СПОСОБ МНОГОСЛОЙНОЙ ГИБРИДНОЙ ЛАЗЕРНО-ДУГОВОЙ СВАРКИ СТАЛЬНЫХ ПЛАКИРОВАННЫХ ТРУБ 2018
  • Никитин Кирилл Николаевич
  • Романцов Александр Игоревич
  • Федоров Михаил Александрович
  • Гизатуллин Антон Бильгуварович
  • Черняев Антон Александрович
  • Котлов Александр Олегович
  • Булыгин Алексей Александрович
RU2706988C1
СПОСОБ ГИБРИДНОЙ ЛАЗЕРНО-ДУГОВОЙ СВАРКИ СТАЛЬНЫХ ТРУБ С НАРУЖНЫМ ПЛАКИРУЮЩИМ СЛОЕМ 2018
  • Никитин Кирилл Николаевич
  • Романцов Александр Игоревич
  • Федоров Михаил Александрович
  • Гизатуллин Антон Бильгуварович
  • Черняев Антон Александрович
  • Котлов Александр Олегович
  • Булыгин Алексей Александрович
RU2684735C1
СПОСОБ ГИБРИДНОЙ ЛАЗЕРНО-ДУГОВОЙ СВАРКИ СТАЛЬНЫХ ТОЛСТОСТЕННЫХ КОНСТРУКЦИЙ 2018
  • Никитин Кирилл Николаевич
  • Романцов Александр Игоревич
  • Федоров Михаил Александрович
  • Черняев Антон Александрович
  • Котлов Александр Олегович
  • Булыгин Алексей Александрович
RU2679858C1
Способ бездефектной гибридной лазерно-дуговой сварки тонкостенных стыковых соединений 2018
  • Романцов Игорь Александрович
  • Романцов Александр Игоревич
  • Федоров Михаил Александрович
  • Черняев Антон Александрович
  • Котлов Александр Олегович
  • Мурзин Дмитрий Алексеевич
  • Мустафин Марат Равилевич
  • Булыгин Алексей Александрович
RU2697756C1
Способ бездефектной гибридной лазерно-дуговой сварки толстостенных стыковых соединений 2018
  • Романцов Игорь Александрович
  • Романцов Александр Игоревич
  • Федоров Михаил Александрович
  • Черняев Антон Александрович
  • Котлов Александр Олегович
  • Мурзин Дмитрий Алексеевич
  • Мустафин Марат Равилевич
  • Булыгин Алексей Александрович
RU2697754C1
Способ гибридной лазерно-дуговой сварки толстостенных труб 2022
  • Гизатуллин Антон Бильгуварович
  • Романцов Игорь Александрович
  • Шандер Сергей Викторович
  • Федоров Михаил Александрович
  • Мурзин Дмитрий Алексеевич
  • Шандер Виктор Викторович
  • Мустафин Марат Равилевич
RU2787195C1
Способ лазерно-дуговой сварки стыка заготовок из углеродистой стали с толщиной стенок 10-45 мм 2017
  • Романцов Александр Игоревич
  • Федоров Михаил Александрович
  • Черняев Антон Александрович
  • Котлов Александр Олегович
  • Булыгин Алексей Александрович
RU2660791C1
Способ лазерно-дуговой сварки стыка сформованной трубной заготовки 2017
  • Романцов Александр Игоревич
  • Федоров Михаил Александрович
  • Черняев Антон Александрович
  • Котлов Александр Олегович
  • Булыгин Алексей Александрович
RU2660541C1
Устройство для лазерно-дуговой сварки стыка сформованной трубной заготовки 2017
  • Романцов Александр Игоревич
  • Федоров Михаил Александрович
  • Черняев Антон Александрович
  • Котлов Александр Олегович
  • Булыгин Алексей Александрович
RU2660503C1
Способ лазерной сварки труб 2017
  • Романцов Александр Игоревич
  • Федоров Михаил Александрович
  • Черняев Антон Александрович
  • Котлов Александр Олегович
RU2637034C1

Иллюстрации к изобретению RU 2 688 350 C1

Реферат патента 2019 года СПОСОБ ГИБРИДНОЙ ЛАЗЕРНО-ДУГОВОЙ СВАРКИ С НАПЫЛЕНИЕМ СТАЛЬНЫХ ПЛАКИРОВАННЫХ ТРУБ

Изобретение относится к сварке продольных швов сформованной цилиндрической заготовки и может быть использовано при производстве стальных сварных труб большого диаметра с толщиной стенки от 12 до 25 мм и выше, до 50 мм, с наружным плакирующим слоем, изготовленным из нержавеющей стали марки, например, 08Х18Н10Т или 12Х18Н10Т. Техническим результатом заявляемого изобретения является минимизация доли сварного шва по отношению к основному металлу и плакированному слою с сохранением антикоррозионных свойств плакированного слоя. Выполняют разделку кромок с величиной притупления, равной до 70% от толщины стенки трубы без учета толщины плакирующего слоя, и величиной наружного скоса кромок больше толщины плакирующего слоя на 2-3 мм. Трубы собирают встык с зазором до 1 мм. Воздействуют электрической дугой с плавящимся электродом. Затем воздействуют лазерным лучом с мощностью, достаточной для проплавления металла с толщиной меньше величины притупления, выполняя рабочий шов с формированием валика на уровне плакирующего слоя. На рабочий шов наносят защитный наружный слой, а также выполняют внутренний шов. 4 з.п. ф-лы, 10 ил., 1 табл.

Формула изобретения RU 2 688 350 C1

1. Способ изготовления стальных плакированных сварных труб большого диаметра, включающий выполнение разделки со скосом кромок, сборку встык кромок и сварку, отличающийся тем, что разделку выполняют с притуплением, равным до 70% от толщины стенки трубы без учета толщины плакирующего слоя, и наружным скосом кромок величиной больше толщины плакирующего слоя на 2-3 мм, при этом сборку встык кромок выполняют с зазором до 1 мм и осуществляют гибридную лазерно-дуговую сварку рабочего шва, при этом сначала воздействуют электрической дугой с плавящимся электродом, после чего воздействуют лазерным лучом мощностью, достаточной для проплавления металла на величину притупления, причем рабочий шов выполняют с формированием валика на уровне плакирующего слоя, а после сварки на рабочий шов наносят защитный наружный слой, а также выполняют внутренний шов.

2. Способ по п. 1, отличающийся тем, что используют X-, Y- или U-образную форму разделки.

3. Способ по п. 1, отличающийся тем, что защитный наружный слой выполняют из покрытия, не уступающего по составу основному плакирующему слою.

4. Способ по п. 1, отличающийся тем, что защитный наружный слой наносят высокоскоростным газопламенным или плазменно-дуговым напылением или лазерной наплавкой порошка.

5. Способ по п. 1, отличающийся тем, что перед выполнением рабочего шва выполняют технологический шов.

Документы, цитированные в отчете о поиске Патент 2019 года RU2688350C1

СПОСОБ СВАРКИ ТРУБ ИЗ СТАЛЕЙ С АНТИКОРРОЗИОННЫМ ПОКРЫТИЕМ В ТРУБОПРОВОД 1998
  • Галиченко Е.Н.
  • Медведев А.П.
  • Прохоров Н.Н.
  • Мухин М.Ю.
  • Малашенко А.О.
RU2155655C2
EP 1878531 A1, 16.01.2008
СПОСОБ СВАРКИ ТРУБ БОЛЬШОГО ДИАМЕТРА ЛАЗЕРНОЙ И ГИБРИДНОЙ ЛАЗЕРНО-ДУГОВОЙ СВАРКОЙ 2015
  • Романцов Игорь Александрович
  • Федоров Михаил Александрович
  • Котлов Александр Олегович
  • Черняев Антон Александрович
RU2609609C2
СПОСОБ И УСТАНОВКА ДЛЯ СВАРКИ ЛАЗЕРНЫМ ЛУЧОМ ПО МЕНЬШЕЙ МЕРЕ ДВУХ КОМПОНЕНТОВ 2010
  • Новак,Дэниел Энтони
  • Арнет,Майкл Дуглас
  • Коттилингам,Срикант Чандруру
RU2553142C2
СПОСОБ СВАРКИ ТРУБ ИЗ ПЛАКИРОВАННОЙ ЛЕНТЫ 1996
  • Кореньков В.И.
  • Кустов Б.А.
  • Оришич А.М.
  • Попов Ю.С.
RU2108178C1
CN 102107330 A, 29.06.2011
JP 2006205515 A, 10.08.2006
CN 102985215 A, 20.03.2013.

RU 2 688 350 C1

Авторы

Никитин Кирилл Николаевич

Романцов Александр Игоревич

Федоров Михаил Александрович

Гизатуллин Антон Бильгуварович

Черняев Антон Александрович

Котлов Александр Олегович

Булыгин Алексей Александрович

Даты

2019-05-21Публикация

2018-04-28Подача