Изобретение относится к области биотехнологии, а именно к способам получения антигенов из клеточных стенок бактерий, которые могут являться кандидатами в качестве компонентов препаратов для профилактики и лечения хронических воспалительных заболеваний, вызываемых условно-патогенными микроорганизмами.
Борьба с инфекционными заболеваниями, вызываемыми резистентными штаммами бактерий рода Staphylococcus, и, в частности, золотистым стафилококком - Staphylococcus aureus, является одной из наиболее актуальных проблем медицины уже на протяжении длительного времени. Противовоспалительная, антибактериальная и симптоматическая терапия не обеспечивает положительный эффект, что ведет к хронизации процесса. Возникает необходимость в использовании препаратов, воздействующих на иммунологический статус организма, то есть в вакцинах. Однако, большинство стратегий вакцинации против S. aureus, концентрировались на однокомпонентных вакцинах на основе капсулярных полисахаридов или известных вирулентных факторов, обладающих мотивом LPXTG, таким как фибронектин-связывающий белок (FnBP), коллагено-подобный белок (CnBP), или хлопьеобразующий (клампинг) фактор A (ClfA), в качестве целей вакцинации [1, 2]. Однако, несмотря на перспективные результаты вакцинации, полученные на животных моделях, до сих пор большинство потенциальных вакцин, проверенных в клинических испытаниях, не обеспечили значительной зашиты от инфекции S. aureus [3]. Вместе с тем, в клеточных стенках бактерий присутствуют нековалентно связанные с ней белки - ACW-белки (anchorless cell wall proteins). Белки, принадлежащие к этому классу, не обладают ни консервативным сигнальным пептидом, ни мотивом LPXTG и признаны в качестве отдельных факторов вирулентности грамположительных бактерий [4]. Большинство из этих ACW-белков являются многофункциональными, например, они участвуют в различных метаболических путях, а также в адгезии к внеклеточному матриксу и инвазии в клетки макроорганизма. Такие белки не могут быть выявлены скринингом последовательности генома из-за отсутствия консервативных эпитопов, таких как LPXTG, а значит требуют непосредственного выделения из клеточных стенок для идентификации.
Существуют различные способы получения антигенов из клеточных стенок бактерий. Одним из них является способ основанный на дезинтеграции бактериальных клеток с добавлением солянокислого гидроксиламина, при этом процесс занимает длительное время - около 48 часов и нуждается в дополнительной очистке от цитоплазматических примесей [5]. Другой способ основан на полном или частичном лизисе пептидогликана клеточной стенки бактерии без нарушения целостности протопласта с использованием лизостафина (ЕС 3.4.24.75) [6] или трипсина [7]. Использование трипсина имеет преимущества в виде невысокой стоимости этого фермента, однако он практически не расщепляет муреиновый остов клеточной стенки золотистого стафилококка, к тому же трипсин частично разрушает получаемые белковые антигены. Поскольку трипсин не разрушает клеточную стенку стафилококка, то его можно использовать для получения антигенов, которые располагаются только на самой поверхности клетки, но не в самой клеточной стенке. Лизостафин в отличие от трипсина эффективно расщепляет муреиновую структуру клеточных стенок золотистого стафилококка, высвобождая максимально большое количество антигенов, которые ассоциированы с клеточной стенкой. Однако, лизостафин обладает высокой стоимостью, поэтому использование 5U лизостафина для получения антигенов из 3×109 клеток, как описано в работе [6] будет приводить к высокой стоимости полученных антигенов, а значит и вакцин полученных из этих антигенов таким способом.
В связи с этим задачей заявленного изобретения является разработка более доступного способа, позволяющего получать антигены из клеточных стенок бактерий с использованием лизостафина.
Поставленная задача достигается путем разработки способа получения антигенов из клеточных стенок бактерий, который предусматривает получение очищенной от культуральной жидкости суспензии S. aureus в количестве 109 клеток в 10 мл изотонического раствора, содержащем 30% маннитола, 10 мМ Трис-HCl, рН 7.5, 1 мМ ЭДТА, 1 мМ PMSF, добавление к суспензии смеси веществ - лизостафина в количестве 0.25U и высокомолекулярного хитозана, со средневесовой молекулярной массой 200 кДа, в количестве 100 мкг, инкубации смеси в течение 5 мин при 37°С, отделением бактериальных протопластов центрифугированием при 2500 g в течение 5 мин, диализом полученного раствора против против буфера 10 мМ Трис-HCl, рН 7.5, концентрированием антигенов в пробирках с мембранами с порами 5 кДа и лиофильным высушиванием. Использование лизостафина в сочетании с высокомолекулярным хитозаном позволялет снизить количество используемого фермента за счет эффекта, который был ранее нами описан в работе [8]: высокомолекулярный хитозаном - поликатион, взаимодействует с клеточной стенкой, экранирует полианионные компоненты клеточной стенки - тейхоевый кислоты, тем самым предотвращая связывание ими лизостафина, который заряжен положительно. Это позволяет снизить количество используемого дорогостоящего лизостафина с 5U до 0.25, то есть в 20 раз, с итоговым получением того же количества бактериальных антигенов. Стоимость высокомолекулярного хитозана составляет менее 1% от стоимости лизостафина (около 2000 руб. за 1 кг вещества в ценах 2018 года), поэтому практически не влияет на удорожание потенциального продукта.
Техническим результатом заявленного изобретения является разработка простого и более дешового способа получения антигенов из клеточных стенок бактерий, характеризующегося хорошей воспроизводимостью результатов, быстротой проведения реакции, малым расходом дорогостоящего фермента - лизостафина.
Пример 1. Получения антигенов из клеточных стенок S. aureus. Клетки S. aureus в количестве 109 клеток ресуспендируют в 10 мл изотонического раствора, содержащем 30% маннитола, 10 мМ Трис-HCl, рН 7.5, 1 мМ ЭДТА, 1 мМ PMSF. Затем к полученной суспензии добавляют смесь веществ - лизостафин в количестве 0.25U и высокомолекулярного хитозана, со средневесовой молекулярной массой 200 кДа, в количестве 100 мкг. При постоянном интенсивном но плавном перемешивании суспензию инкубируют в течение 5 мин при 37°С. Затем суспензию подвергают центрифугированию при 2500 g в течение 5 мин для отделения бактериальных протопластов. После отделения протопластов надосадочную жидкость, содержащую антигены, диализуют против буфера 10 мМ Трис-HCl, рН 7.5, (1:200 по объему) в течение 12 ч. После диализа раствор антигенов концентрируют и дополнительно промывают от маннитола буфером 10 мМ Трис-HCl, рН 7.5 антигенов в пробирках с мембранами с порами 5 кДа. После концентрирования антигенов раствор подвергают лиофильному высушиванию.
Пример 2. Получения антигенов из клеточных стенок проводим аналогично примеру 1, но вместо Staphylococcus aureus используем другой вид бактерий - Staphylococcus epidermidis.
ЛИТЕРАТУРА
1. Fattom, A.I., G. Horwith, S. Fuller, M. Propst, Naso R. / Development of StaphVAX, a polysaccharide conjugate vaccine against S. aureus infection: from the lab bench to phase III clinical trials. // Vaccine 2004. 22:880-887.
2. Rivas J.M., Speziale P., Patti J.M., M Hook. / MSCRAMM-targeted vaccines and immunotherapy for staphylococcal infection. // Curr. Opin. Drug Discov. Dev. 2004. 7:223-227.
3. Schaffer A.C., Lee J.C.. Vaccination and passive immunisation against Staphylococcus aureus. Int. J. Antimicrob. Agents 2008. 32(Suppl. 1):S71-S78.
4. Chhatwal G.S. 2002. Anchorless adhesins and invasins of Gram-positive bacteria: a new class of virulence factors. Trends Microbiol. 10:205-208.
5. Егорова Н.Б., Семенов Б.Ф., Курбатова E.A., Ефремова В.Н., Каверина К.Г., Михайлова Н.А. / Поликомпонентная вакцина для иммунопрофилактики и иммунотерапии заболеваний, вызываемых условно-патогенными микроорганизмами // Патент RU №2209081
6. Vytvytska О., Nagy Е., М., Meyer Н.Е., Kurzbauer R., Huber L.A., Klade C.S. / Identification of vaccine candidate antigens of Staphylococcus aureus by serological proteome analysis // Proteomics. 2002 (5):580-90.
7. Ventura C.L., Malachowa N., Hammer C.H., Nardone G.A., Robinson M.A., Kobayashi S.D., DeLeo F.R. / Identification of a novel Staphylococcus aureus two-component leukotoxin using cell surface proteomics // PLoS One. 2010 5(7):e11634. doi: 10.1371/journal.pone.0011634.
8. Куликов C.H., Хайруллин P.З., Варламов В.П. / Влияние поликатионов на антибактериальную активность лизостафина // Прикладная биохимия и микробиология 2015. Т. 51. №6. с. 610-615. DOI: 10.7868/S0555109915060082
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ АНТИГЕНОВ СТАФИЛОКОККА ЗОЛОТИСТОГО С ИСПОЛЬЗОВАНИЕМ ЛИЗОЦИМА И НИЗКОМОЛЕКУЛЯРНОГО ХИТОЗАНА | 2020 |
|
RU2740366C1 |
АНТИБАКТЕРИАЛЬНАЯ КОМПОЗИЦИЯ НА ОСНОВЕ ХИТОЗАНА И ЛИЗОСТАФИНА | 2016 |
|
RU2629819C1 |
СПОСОБ ЭКСПРЕСС-ОПРЕДЕЛЕНИЯ АНТИБАКТЕРИАЛЬНОГО ПОТЕНЦИАЛА ХИТОЗАНА В ОТНОШЕНИИ СТАФИЛОКОККОВ | 2012 |
|
RU2488116C1 |
БАКТЕРИОЛИТИЧЕСКИЙ КОМПЛЕКС, СПОСОБ ЕГО ПОЛУЧЕНИЯ И ШТАММ ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА | 2000 |
|
RU2193063C2 |
Рекомбинантная плазмидная ДНК pQE-70_LysAP46, обеспечивающая синтез рекомбинантного белка LysAP46, штамм бактерий Escherichia coli - продуцент рекомбинантного белка LysAP46 и рекомбинантный белок LysAP46, обладающий антибактериальным действием | 2022 |
|
RU2809842C1 |
СПОСОБ ИДЕНТИФИКАЦИИ, ВЫДЕЛЕНИЯ И ПОЛУЧЕНИЯ АНТИГЕНОВ ОПРЕДЕЛЕННОГО ПАТОГЕНА | 2002 |
|
RU2289817C2 |
Бесклеточная система синтеза белка на основе клеток Staphylococcus aureus, способ синтеза белка на основе клеток Staphylococcus aureus с использованием бесклеточной системы синтеза белка на основе клеток Staphylococcus aureus и способ выявления ингибиторов синтеза белка с ее использованием | 2022 |
|
RU2802080C1 |
СПОСОБ ПОЛУЧЕНИЯ ЛИЗОСТАФИНА | 1994 |
|
RU2143489C1 |
ЛИТИЧЕСКАЯ ПРОТЕАЗА AlpA БАКТЕРИИ LYSOBACTER SP. XL1, ФРАГМЕНТ ДНК, КОДИРУЮЩИЙ ЛИТИЧЕСКУЮ ПРОТЕАЗУ AlpA БАКТЕРИИ LYSOBACTER SP. XL1, И СПОСОБ ПОЛУЧЕНИЯ ЛИТИЧЕСКОЙ ПРОТЕАЗЫ AlpA БАКТЕРИИ LYSOBACTER SP. XL1 | 2009 |
|
RU2407782C2 |
ЛИТИЧЕСКАЯ ПРОТЕАЗА AlpB БАКТЕРИИ Lysobacter sp. XLI, ФРАГМЕНТ ДНК, КОДИРУЮЩИЙ ЛИТИЧЕСКУЮ ПРОТЕАЗУ AlpB БАКТЕРИИ Lysobacter sp. XLI, И СПОСОБ ПОЛУЧЕНИЯ ЛИТИЧЕСКОЙ ПРОТЕАЗЫ AlpB БАКТЕРИИ Lysobacter sp. XLI | 2009 |
|
RU2408725C2 |
Изобретение относится к области медицины и биотехнологии и может быть использовано для получения антигенов из клеточных стенок бактерий, которые могут являться компонентами препаратов для профилактики и лечения хронических воспалительных заболеваний, вызываемых условно-патогенными микроорганизмами. Способ осуществляется следующим образом: к клеткам Staphylococcus aureus в количестве 109 клеток в изотоническом растворе добавляют смесь веществ - лизостафина в количестве 0.25U и высокомолекулярного хитозана, со средневесовой молекулярной массой 200 кДа, в количестве 100 мкг, инкубируют смесь в течение 5 мин при 37°С, отделяют бактериальные протопласты центрифугированием при 2500 g в течение 5 мин, полученный раствор, содержащий антигены, диализуют, концентрируют и высушивают лиофильно. Использование изобретения позволяет разработать простой и более дешевый способ получения антигенов из клеточных стенок бактерий, характеризующийся хорошей воспроизводимостью результатов, быстротой проведения реакции, малым расходом дорогостоящего фермента - лизостафина. 2 пр.
Способ получения антигенов из клеточных стенок бактерий, отличающийся тем, что при его проведении к клеткам Staphylococcus aureus в количестве 109 клеток в изотоническом растворе добавляют смесь веществ - лизостафина в количестве 0.25U и высокомолекулярного хитозана, со средневесовой молекулярной массой 200 кДа, в количестве 100 мкг, инкубации смесь в течение 5 мин при 37°С, отделяют бактериальные протопласты центрифугированием при 2500 g в течение 5 мин, полученный раствор антигенов диализуют, концентрируют и высушивают лиофильно.
СПОСОБ ИДЕНТИФИКАЦИИ, ВЫДЕЛЕНИЯ И ПОЛУЧЕНИЯ АНТИГЕНОВ ОПРЕДЕЛЕННОГО ПАТОГЕНА | 2002 |
|
RU2289817C2 |
КОНЪЮГАЦИЯ КАПСУЛЬНЫХ ПОЛИСАХАРИДОВ STAPHYLOCOCCUS AUREUS ТИПА 5 И ТИПА 8 | 2010 |
|
RU2603267C2 |
EA 201592040 A1, 30.06.2016 | |||
WO 2014195280 А1, 11.12.2014 | |||
КУЛИКОВ С | |||
Н | |||
и др | |||
Активация лизостафина как способ оценки антибактериального потенциала хитозана//Вестник Казанского технологического университета, 2013, Т.16, N7, С | |||
Канатное устройство для подъема и перемещения сыпучих и раздробленных тел | 1923 |
|
SU155A1 |
Авторы
Даты
2019-05-24—Публикация
2018-10-04—Подача