Способ получения сэндвичевых бис(фталоцианинатов) и/или трис(фталоцианинатов) редкоземельных элементов Российский патент 2019 года по МПК C07F5/00 C07D487/22 

Описание патента на изобретение RU2691011C1

Область техники, к которой относится изобретение

Изобретение относится к химии макрогетероциклических соединений, а именно к методам синтеза фталоцианинов и их аналогов, и может быть применено для синтеза металлокомплексов сэндвичевого (двух- и трехпалубного) строения - бис(фталоцианинатов) и трис(фталоцианинатов) редкоземельных элементов (РЗЭ), исходя из соответствующих моно(фталоцианинатов) РЗЭ.

Предпосылки создания изобретения (Уровень техники)

Фталоцианины представляют собой 18π-сопряженные азотсодержащие макрогетероциклы, способные к формированию комплексных соединений практически со всеми элементами периодической системы, а также имеющие в своем составе 16 ароматических положений для введения различных заместителей, в том числе, и функциональных групп. Уникальное строение фталоцианинов и родственных им тетрапиррольных макроциклов задает благоприятную комбинацию характерных оптических и редокс свойств в сочетании с выдающейся для органических соединений термической и химической устойчивостью. Многие годы они находят применение в качестве оптических материалов, полупроводниковых и активных компонент оптоэлектронных, сенсорных устройств, высокоемких элементов памяти, электрохромных составляющих, фотосенсибилизаторов для ФДТ и медицинской диагностики [Leznoff, C. C., Lever, A.B.P. Editors (1989-1996). Phthalocyanines - properties and applications, VCH, New York; Kadish, K.M., Smith, K.M., Guilard, R. Editors (2010-2012). Handbook of porphyrin science: with applications to chemistry, physics, materials science, engineering, biology and medicine, World Scientific, Singapore; Jiang, J. Editor (2010). Functional phthalocyanine molecular materials. In Structure and Bonding, 135, Springer; Belogorokhov, I.A. (2014). Semiconductor materials of the 21st century from phthalocyanines and nanosilicon, LAP LAMBERT Academic Publishing].

Особое место среди фталоцианинатных комплексов принадлежит соединениям, в структуру которых включены редкоземельные элементы (РЗЭ). Благодаря наличию больших ионных радиусов и высоких координационных чисел (ковалентный радиус ≥ 1.35Å, КЧ ≥ 8), РЗЭ образуют с фталоцианинами и их аналогами несколько типов соединений как планарного, так и сэндвичевого строения. Характерные для комплексов сэндвичевого строения внутримолекулярные π-π, f-π и f-f взаимодействия лежат в основе уникальных характеристик, открывающих возможности применения данных соединений в качестве электрохромных составляющих, сенсоров на газы, ионы металлов, пищевые продукты и биомолекулы, молекулярных магнетиков, материалов для мультибитового хранения информации, молекулярной электроники и нелинейной оптики [Pushkarev, V.E., Nemykin, V.N., Tomilova, L.G. (2016). Historic overview and new developments in synthetic methods for preparation of the rare-earth tetrapyrrolic complexes. Coordination Chemistry Reviews, 319, 110-179. https://doi.org/10.1016/j.ccr.2016.04.005].

Основным препятствием для широкого использования таких соединений является отсутствие доступного и экономичного метода их синтеза.

Существует два основных подхода к синтезу фталоцианинов и их комплексных соединений с различными металлами.

Первый метод - темплатной сборки - заключается в тетрамеризации производных фталевых кислот (как правило, фталодинитрилов) в присутствии солей металлов. Главным недостатком этого метода, препятствующим его глубокому технологическому внедрению, является образование значительного числа побочных продуктов (не макроциклов), поскольку используемые фталогены являются как реагентами, так и средой реакции. Кроме того, при использовании данного метода в синтезе комплексов РЗЭ макроциклические продукты зачастую образуются в виде смеси моно-, бис-, трис(фталоцианинатов) и свободных лигандов [M'Sadak, M., Roncali, J., Garnier, F. (1986). Lanthanides - Phthalocyanines Complexes: From a Diphthalocyanine Pc2Ln to a Super Complex Pc3Ln2. Journal de Chimie Physique, 83(3), 211-216, https://doi.org/10.1051/jcp/1986830211; Clarisse, C., Riou M.T. (1987). Synthesis and Characterization of some Lanthanide Phthalocyanines. Inorganica Chimica Acta, 130(1), 139-144, https://doi.org/10.1016/S0020-1693(00)85943-5; Trojan, K.L., Kendall, J.L., Kepler, K.D., Hatfield, W.E. (1992). Strong exchange coupling between the lanthanide ions and the phthalocyaninato ligand radical in bis(phthalocyaninato) lanthanide sandwich compounds. Inorganica Chimica Acta, 198-200, 795-804, https://doi.org/10.1016/S0020-1693(00)92425-3; Liu, Y., Shigehara, K., Yamada, A. (1992). Preparation of Bis(phthalocyaninato)lutetium with Various Substituents and Their Electrochemical Properties. Bulletin of the Chemical Society of Japan, 65(1), 250-257, https://doi.org/10.1246/bcsj.65.250; Słota, R., Dyrda, G., Hofer, M., Mele, G., Bloise, E., del Sole R. (2012). Novel Lipophilic Lanthanide Bis-Phthalocyanines Functionalized by Pentadecylphenoxy Groups: Synthesis, Characterization and UV-Photostability. Molecules, 17(9), 10738-10753, https://doi.org/10.3390/molecules170910738]. Таким образом, выходы конкретных фталоцианинатов РЗЭ, полученных темплатным методом, как правило, оказываются невысокими, а их выделение - крайне трудозатратным, так как требует разделения многокомпонентной смеси.

Второй метод - прямое взаимодействие солей металлов с предварительно сформированными лигандами, как правило, позволяет избежать образования немакроциклических примесей. При этом фталоцианиновые комплексы РЗЭ образуются с более высокой селективностью.

Вместе с тем, сложившаяся к настоящему моменту методология прямого синтеза сэндвичевых фталоцианинатов РЗЭ предполагает необходимость использования высококипящих органических растворителей и других, прежде всего, основных добавок, что обуславливает наличие довольно трудозатратной стадии выделения целевых продуктов в индивидуальном состоянии {Пушкарев, В.Е., Бреусова, М.О., Шулишов, Е.В., Томилов, Ю.В. (2005). Селективный синтез и спектральные свойства алкилзамещенных моно-, ди- и трифталоцианинов лантанидов (III). Известия Академии Наук: Серия Химическая, 54(9), 2024-2030 [Pushkarev, V.E., Breusova, M.O., Shulishov, E.V., Tomilov, Yu.V. (2005). Selective synthesis and spectroscopic properties of alkyl-substituted lanthanide(III) mono-, di-, and triphthalocyanines. Russian Chemical Bulletin, International Edition, 54(9), 2087-2093], https://doi.org/10.1007/s11172-006-0081-x; Горбунова, Ю.Г., Лапкина, Л.А., Мартынов, А.Г., Бирюкова, И.В., Цивадзе, А.Ю. (2004). Синтез, строение и координационные особенности краунфталоцианинатов редкоземельных элементов. Координационная химия, 30(4), 263-270 [Gorbunova, Y.G., Lapkina, L.A., Martynov, A.G., Biryukova, I.V., Tsivadze, A.Y. (2004). Lanthanide crownphthalocyaninates: synthesis, structure, and peculiarities of formation. Russian Journal of Coordination Chemistry, 30(4), 245-251], https://doi.org/10.1023/B:RUCO.0000022799.63314.fc; Gao, Y., Li, R., Dong, S., Bian, Y., Jiang, J. (2010). Bis[1,4,8,11,15,18,22,25-octa(butyloxyl)phthalocyaninato] rare earth double-decker complexes: synthesis, spectroscopy, and molecular structure. Dalton Transactions, 39(5), 1321-1327,https://doi.org/10.1039/B911178F}.

Таким образом, для повышения технологической доступности сэндвичевых фталоцианинатов РЗЭ высокую актуальность имеет разработка метода их прямого синтеза в отсутствие растворителей и других добавок.

В работе [Ishikawa, N., Okubo, T., Kaizu, Y. (1999). Spectroscopic and quantum chemical studies of excited states of one- and two-electron oxidation products of a lutetium triple-decker phthalocyanine complex. Inorganic Chemistry, 38(13), 3173-3181. https://doi.org/10.1021/ic981463x], принятой нами за прототип, описано образование трис(фталоцианината) лютеция Pc3Lu2 при анализе смеси, полученной нагреванием незамещенного монофталоцианината лютеция PcLu(CH3COO)·(H2O) при 400 °С в течение 4 ч в вакууме (около 1 торр) в сублимационной трубке, снабженной водоохлаждаемой внутренней ловушкой, с выходом 40%.

Однако, нагревание в условиях вакуумной сублимации для получения целевого продукта является трудозатратным и дорогостоящим способом получения сэндвичевых трис(фталоцианинатов) РЗЭ, а продолжительность синтеза измеряется часами.

Предлагаемое изобретение решает задачу поиска нового способа получения сэндвичевых бис(фталоцианинатов) и трис(фталоцианинатов) РЗЭ, высокий выход которых и низкая себестоимость (из-за быстроты проведения реакции и отсутствия необходимости работы в условиях вакуумной сублимации) позволит значительно удешевить их производство и использовать их для более широкого круга прикладных задач.

Поставленная задача решается разработкой способа получения сэндвичевых бис(фталоцианинатов) и/или трис(фталоцианинатов) РЗЭ нагреванием соответствующих моно(фталоцианинатов) РЗЭ в открытом или замкнутом сосуде при атмосферном или повышенном (в случае нагревания смеси в замкнутом сосуде) давлении при температурах 290-430 °С. При этом продолжительность нагревания смеси измеряется минутами, а получаемые выходы целевых продуктов составляют 60-94%.

Отсутствие источников информации, содержащих ту же совокупность признаков, что и в разработанном способе, сообщает ему соответствие критерию «новизна».

Та же совокупность признаков позволяет получить новый непредсказуемый эффект, получение соединений более простым и удобным методом, и таким образом сообщает ей соответствие критерию «изобретательский уровень».

В силу широкого круга прикладных задач изобретение соответствует критерию «промышленная применимость»

Сущность изобретения

Настоящим изобретением предлагается решение задачи одностадийного синтеза сэндвичевых бис(фталоцианинатов) РЗЭ (RR'Pc2Ln) общей формулы (I) и/или трис(фталоцианинатов) РЗЭ (RR'Pc3Ln2) общей формулы (II)

(RR'Pc2Ln, I)

(RR'Pc3Ln2, II),

где R и R' могут независимо или одновременно принимать значения H, низший алкил, а также R+R' может быть -ОС(СН3)2О-;

Ln = элемент из ряда РЗЭ;

из соответствующих монофталоцианинатов РЗЭ (RR'PcLnX) общей формулы (III)

(RR'PcLnX, III),

где R и R' могут независимо или одновременно принимать значения H, низший алкил, а также R+R' может быть -ОС(СН3)2О-;

Ln = элемент из ряда РЗЭ;

Х = галоген, CH3COO, CH3COCHCOCH3

путем их кратковременного нагревания в открытом или замкнутом сосуде при атмосферном или повышенном (в случае нагревания смеси в замкнутом сосуде) давлении с последующим, в случае необходимости, хроматографическим разделением продуктов.

В дальнейшем для удобства при описании эксперимента и в таблице 1 для обозначения Х введены сокращения: (OAc) для СH3COO и (acac) для CH3COCHCOCH3.

В качестве реактора использовали нагревательную систему прибора Termogravimetric analyzer Pyris 6 TGA (Perkin Elmer).

ЭСП регистрировали с помощью спектрофотометра U-2900 (Hitachi) в 1 см кварцевых кюветах для растворов соединений в тетрагидрофуране (ТГФ) с концентрацией порядка 5·10-5 М, масс-спектры матричной лазерной десорбционной ионизации с времяпролетным детектором (matrix-assisted laser desorption-ionization time-of-flight, MALDI-TOF) регистрировали на приборе VISION-2000 (Thermo BioAnalysis) с использованием α-циано-4-гидроксикоричной кислоты (α-cyano-4-hydroxycinnamic acid, HCCA) в качестве матрицы.

В качестве исходных соединений согласно настоящему изобретению использовали доступные монофталоцианинаты РЗЭ общей формулы III, синтез которых проводили в соответствии с описанной методикой [Pushkarev, V.E., Breusova, M.O., Shulishov, E.V., Tomilov, Yu.V. (2005). Selective synthesis and spectroscopic properties of alkyl-substituted lanthanide(III) mono-, di-, and triphthalocyanines. Russian Chemical Bulletin, International Edition, 54(9), 2087-2093. https://doi.org/10.1007/s11172-006-0081-x] кипячением эквимолярной смеси соответствующего свободного фталоцианинового лиганда и соли РЗЭ в присутствии двукратного мольного избытка 1,8-диазабицикло[5.4.0]ундец-7-ена (ДБУ) в среде 1,2-дихлорбензола (ДХБ) в токе аргона в течение 3-4 ч с выходами 89-97%.

Синтез сэндвичевых фталоцианинатов РЗЭ по настоящему изобретению проводили по следующей общей методике:

Навеску образца монофталоцианината РЗЭ III RR'PcLnX (как правило, 5-20 мг) помещали в кварцевый тигель (или запаянную ампулу, автоклав), как правило, объемом 0.5-2 мл, который затем помещали в реактор, разогретый до температуры 290-430 °C, и выдерживали необходимое время при указанной температуре. Полученный в ходе реакции порошок растворяли в ТГФ, раствор фильтровали на стеклянном пористом фильтре от нерастворимого остатка, растворитель удаляли в вакууме. Сэндвичевые продукты I (RR'Pc2Ln) и/или II (RR'Pc3Ln2), в случае необходимости, выделяли и/или разделяли методом препаративной тонкослойной хроматографии (ТСХ) на силикагеле. Строение полученных продуктов подтверждали методами электронной спектроскопии поглощения (ЭСП) и масс-спектрометрии MALDI-TOF. Выходы целевых продуктов составляли 60-94%. Приведенные ниже примеры иллюстрируют, но не ограничивают настоящее изобретение.

Пример 1. Продукты, полученные при нагревании HHPcLuOAc (III, R = R' = H, Ln = Lu, X = OAc) при 400°С в течение 2.5 мин.

Методом препаративной ТСХ на силикагеле MN Silica Gel 60 (элюент - толуол/ТГФ, 1:1) выделяли фракцию синего цвета с Rf = 0.49 (2.1 мг, 68%), представляющую собой HHPc3Lu2 (II, R = R' = H, Ln = Lu), и фракцию зеленого цвета с Rf = 0.28 (0.62 мг, 20%), представляющую собой HHPc2Lu (I, R = R' = H, Ln = Lu).

Данные для HHPc2Lu:

ЭСП [ТГФ, λmax/нм (I/Imax)]: 319 (0.78), 336 (0.60), 453 (0.22), 593 (0.20), 657 (1.00).

Масс-спектр (MALDI-TOF), m/z: вычислено для C64H34N16Lu 1201.26, найдено 1201.56.

Данные для HHPc3Lu2:

ЭСП [ТГФ, λmax/нм (I/Imax)]: 336 (1.00), 626 (0.90), 713 (0.19).

Масс-спектр (MALDI-TOF), m/z: вычислено для C96H48N24Lu2 [M]+ 1887.33, найдено 1887.39.

Пример 2. Продукты, полученные при нагревании HHPcTbOAc (III, R = R' = H, Ln = Tb, X = OAc) при 410°С в течение 1.5 мин.

Методом препаративной ТСХ на силикагеле MN Silica Gel 60 (элюент - толуол/ТГФ, 1:1) выделяли фракцию синего цвета с Rf = 0.55 (4.1 мг, 71%), представляющую собой HHPc3Tb2 (II, R = R' = H, Ln = Tb), и фракцию зеленого цвета с Rf = 0.26 (1.3 мг, 23%), представляющую собой HHPc2Tb (I, R = R' = H, Ln = Tb).

Данные для HHPc2Tb:

ЭСП [ТГФ, λmax/нм (I/Imax)]: 324 (1.00), 344 (0.71), 454 (0.25), 595 (0.23), 662 (0.97).

Масс-спектр (MALDI TOF), m/z: вычислено для C64H34N16Tb 1185.24, найдено 1184.95.

Данные для HHPc3Tb2:

ЭСП [ТГФ, λmax/нм (I/Imax)]: 335 (0.98), 636 (1.00).

Масс-спектр (MALDI-TOF), m/z: вычислено для C96H48N24Tb2 [M]+ 1855.30, найдено 1855.54.

Пример 3. Продукт, полученный при нагревании HHPcEu(acac) (III, R = R' = H, Ln = Eu, X = acac) при 420 °С в течение 2 мин.

Методом препаративной ТСХ на силикагеле MN Silica Gel 60 (элюент - толуол) выделяли фракцию зеленого цвета с Rf = 0.54 (3.7 мг, 82%), представляющую собой HHPc2Eu (I, R = R' = H, Ln = Eu).

ЭСП [ТГФ, λmax/нм (I/Imax)]: 326 (0.70), 347 (0.68), 457 (0.22), 599 (0.19), 659 (1.00).

Масс-спектр (MALDI-TOF), m/z: вычислено для C64H34N16Eu [M]+ 1179.24, найдено 1179.46.

Пример 4. Продукт, полученный при нагревании ipdoPcLuOAc (III, R+R' = -ОС(СН3)2О-, Ln = Lu, X = OAc) при 300 °С в течение 2.5 мин.

Методом препаративной ТСХ на силикагеле MN Silica Gel 60 (элюент - толуол) выделяли фракцию зеленого цвета с Rf = 0.47 (5.4 мг, 60%), представляющую собой ipdoPc2Lu (I, R+R' = -ОС(СН3)2О-, Ln = Lu).

ЭСП [ТГФ, λmax/нм (I/Imax)]: 330 (1.00), 363 (0.69), 461 (0.26), 596 (0.24), 669 (0.95).

Масс-спектр (MALDI-TOF), m/z: вычислено для C88H66LuN16O16 [M]+ 1777.43, найдено 1778.04.

Пример 5. Продукт, полученный при нагревании BuBuPcYbOAc (III, R = R' = н-С4Н9, Ln = Yb, X = OAc) при 415°С в течение 1.5 мин.

Полученный твердый остаток синего цвета c Rf = 0.77 (силикагель MN Silica Gel 60, элюент - толуол) с выходом 9.6 мг (94%) представляет собой BuBuPc3Yb2 (II, R = R' = н-С4Н9, Ln = Yb).

ЭСП [ТГФ, λmax/нм (I/Imax)]: 340 (1.00), 595 (0.24), 665 (0.56).

Масс-спектр (MALDI-TOF), m/z: вычислено для C192H240N24Yb2 [M]+ 3228.83, найдено 3228.92.

Пример 6. Продукт, полученный при нагревании BuBuPcErOAc (III, R = R' = н-С4Н9, Ln = Er, X = OAc) при 410°С в течение 1.5 мин.

Полученный твердый остаток синего цвета c Rf = 0.78 (силикагель MN Silica Gel 60, элюент - толуол) с выходом 20.7 мг (92%) представляет собой BuBuPc3Er2 (II, R = R' = н-С4Н9, Ln = Er).

ЭСП [ТГФ, λmax/нм (I/Imax)]: 340 (1.00), 595 (0.29), 665 (0.67).

Масс-спектр (MALDI-TOF), m/z: вычислено для C192H240N24Er2 [M]+ 3217.82, найдено 3217.89.

Пример 7. Продукт, полученный при нагревании BuBuPcTbOAc (III, R = R' = н-С4Н9, Ln = Tb, X = OAc) при 415°С в течение 1.5 мин.

Полученный твердый остаток синего цвета c Rf = 0.79 (силикагель MN Silica Gel 60, элюент - толуол) с выходом 16.0 мг (94%) представляет собой BuBuPc3Tb2 (II, R = R' = н-С4Н9, Ln = Tb).

ЭСП [ТГФ, λmax/нм (I/Imax)]: 340 (1.00), 595 (0.30), 667 (0.78).

Масс-спектр (MALDI-TOF), m/z: вычислено для C192H240N24Tb2 [M]+ 3201.81, найдено 3201.42.

Пример 8. Продукт, полученный при нагревании HtBuPcLuOAc (III, R = H, R' = трет-С4Н9, Ln = Lu, X = OAc) при 430°С в течение 1.5 мин.

Полученный твердый остаток синего цвета c Rf = 0.85 (силикагель MN Silica Gel 60, элюент - толуол) с выходом 7.9 мг (93%) представляет собой HtBuPc3Lu2 (II, R = H, R' = трет-С4Н9, Ln = Lu).

ЭСП [ТГФ, λmax/нм (I/Imax)]: 340 (1.00), 635 (0.75), 717 (0.20).

Масс-спектр (MALDI-TOF), m/z: вычислено для C144H144N24Lu2 [M]+ 2560.09, найдено 2559.58.

Пример 9. Продукт, полученный при нагревании HtBuPcLuCl (III, R = H, R' = трет-С4Н9, Ln = Lu, X = Cl) при 425°С в течение 1.5 мин.

Полученный твердый остаток синего цвета c Rf = 0.85 (силикагель MN Silica Gel 60, элюент - толуол) с выходом 10.8 мг (86%) представляет собой HtBuPc3Lu2 (II, R = H, R' = трет-С4Н9, Ln = Lu).

ЭСП [ТГФ, λmax/нм (I/Imax)]: 340 (1.00), 635 (0.75), 717 (0.20).

Масс-спектр (MALDI-TOF), m/z: вычислено для C144H144N24Lu2 [M]+ 2560.09, найдено 2559.58.

Пример 10. Продукт, полученный при нагревании HtBuPcTbOAc (III, R = H, R' = трет-С4Н9, Ln = Tb, X = OAc) при 420°С в течение 1 мин.

Полученный твердый остаток синего цвета c Rf = 0.83 (силикагель MN Silica Gel 60, элюент - толуол) с выходом 6.7 мг (94%) представляет собой HtBuPc3Tb2 (II, R = H, R' = трет-С4Н9, Ln = Tb).

ЭСП [ТГФ, λmax/нм (I/Imax)]: 340 (1.00), 640 (0.96).

Масс-спектр (MALDI-TOF), m/z: вычислено для C144H144N24Tb2 [M]+ 2528.05, найдено 2527.55.

Результаты термических превращений монофталоцианинатов РЗЭ приведены в Табл. 1.

Табл. 1. Примеры термических превращений монофталоцианинатов РЗЭ III в сэндвичевые бис(фталоцианинаты) I и/или трис(фталоцианинаты) II Пример
Исходный комплекс,
RR'PcLnX, III
Температура реакции, С Время реакции, мин Продукты (выход, %)
RR'Pc2Ln, I RR'Pc3Ln2, II 1 HHPcLuOAc 400 2.5 HHPc2Lu (20) HHPc3Lu2 (68) 2 HHPcTbOAc 410 1.5 HHPc2Tb (23) HHPc3Tb2 (71) 3 HHPcEu(acac) 420 2.0 HHPc2Eu (82) - 4 ipdoPcLuOAc 300 2.5 ipdoPc2Lu (60) - 5 BuBuPcYbOAc 415 1.5 - BuBuPc3Yb2 (94) 6 BuBuPcErOAc 410 1.5 - BuBuPc3Er2 (92) 7 BuBuPcTbOAc 415 1.5 - BuBuPc3Tb2 (94) 8 HtBuPcLuOAc 430 1.5 - HtBuPc3Lu2 (93) 9 HtBuPcLuCl 425 1.5 - HtBuPc3Lu2 (86) 10 HtBuPcTbOAс 420 1.0 - HtBuPc3Tb2 (94)

Похожие патенты RU2691011C1

название год авторы номер документа
СПОСОБ РАЗДЕЛЕНИЯ СМЕСИ БИС(ТЕТРА-4-[2,4,5-ТРИХЛОРФЕНОКСИ])ФТАЛОЦИАНИНАТА ЭРБИЯ(III) И ТЕТРА-4-(2,4,5-ТРИХЛОРФЕНОКСИ)ФТАЛОЦИАНИНА КОЛОНОЧНОЙ ХРОМАТОГРАФИЕЙ 2022
  • Ботнарь Анна Александровна
  • Тихомирова Татьяна Вячеславовна
  • Вашурин Артур Сергеевич
  • Леонтьева Галина Венидиктовна
RU2796740C1
КОМПЛЕКС ИЗОИНДОЛО[5,6-f]ИЗОИНДОЛ-1,3,6,8(2Н,7Н)-ТЕТРААМИНА, 6,7- ДИФЕНИЛ-2,3-ДИЦИАНОНАФТАЛИНА И Mg И СПОСОБ ПОЛУЧЕНИЯ КОМПЛЕКСА 2010
  • Томилова Лариса Годвиговна
  • Дубинина Татьяна Валентиновна
RU2430924C1
КОВАЛЕНТНЫЕ КОНЪЮГАТЫ НА ОСНОВЕ ФТАЛОЦИАНИНОВ И МЕТИЛФЕОФОРБИДА а, СПОСОБЫ ИХ ПОЛУЧЕНИЯ И ИСПОЛЬЗОВАНИЯ В МЕДИЦИНЕ 2019
  • Томилова Лариса Годвиговна
  • Пушкарев Виктор Евгеньевич
  • Балашова Ирина Олеговна
  • Шестов Владимир Ильич
  • Пономарев Гелий Васильевич
  • Койфман Оскар Иосифович
  • Платонова Яна Борисовна
  • Волов Александр Николаевич
RU2722309C1
ТЕТРА-4-[(2-МЕТОКСИФЕНОКСИ)-5-НИТРО]ФТАЛОЦИАНИН МЕДИ, КОБАЛЬТА ИЛИ ЦИНКА 2023
  • Рассолова Анастасия Евгеньевна
  • Баклагин Вячеслав Леонидович
  • Молчанов Евгений Евгеньевич
  • Абрамов Игорь Геннадьевич
  • Майзлиш Владимир Ефимович
RU2821513C1
5-[4′-(N-МЕТИЛ-1′′,3′′-БЕНЗИМИДАЗОЛ-2′′-ИЛ)ФЕНИЛ]-10,15,20-ТРИС(4′-СУЛЬФОФЕНИЛ)ПОРФИН И ПРИМЕНЕНИЕ ЕГО В КАЧЕСТВЕ КИСЛОТНОГО ИНДИКАТОРА ДЛЯ ОПТИЧЕСКОГО И ВИЗУАЛЬНОГО ОПРЕДЕЛЕНИЯ рН 2022
  • Сырбу Сергей Александрович
  • Лебедева Наталья Шамильевна
  • Юрина Елена Сергеевна
  • Киселёв Алексей Николаевич
  • Лебедев Михаил Александрович
  • Бычкова Светлана Александровна
RU2813631C1
5-[4-(1,3-БЕНЗОТИАЗОЛ-2-ИЛ)ФЕНИЛ]-10,15,20-ТРИС(1-МЕТИЛПИРИДИНИЙ-3-ИЛ)ПОРФИРИН ТРИИОДИД, ПРОЯВЛЯЮЩИЙ СВОЙСТВО СВЯЗЫВАНИЯ СПАЙКОВОГО БЕЛКА ВИРУСА SARS-CoV-2 2021
  • Сырбу Сергей Александрович
  • Киселёв Алексей Николаевич
  • Губарев Юрий Александрович
  • Лебедева Наталья Шамильевна
  • Семейкин Александр Станиславович
  • Койфман Оскар Иосифович
RU2773397C1
СПОСОБ ПОЛУЧЕНИЯ ЛЮМИНЕСЦИРУЮЩИХ РАСТВОРИМЫХ КОМПЛЕКСОВ ДВУХВАЛЕНТНЫХ ЛАНТАНИДОВ LnCl∙(ТГФ) (Ln=Eu, Yb, Sm) 2014
  • Булгаков Рамиль Гарифович
  • Елисеева Светлана Михайловна
  • Галимов Дим Иршатович
  • Джемилев Усеин Меметович
RU2574265C2
5-[4'-(1",3",7"-ТРИМЕТИКСАНТ-2"-ИЛ)ФЕНИЛ] 10,15,20-ТРИС-(N-МЕТИЛПИРИДИНИЙ-3'-ИЛ)ПОРФИРИН ТРИИОДИД, ПРОЯВЛЯЮЩИЙ СВОЙСТВА рН-ИНДИКАТОРА СИЛЬНОКИСЛЫХ СРЕД 2023
  • Сырбу Сергей Александрович
  • Лебедева Наталья Шамильевна
  • Юрина Елена Сергеевна
  • Киселёв Алексей Николаевич
  • Лебедев Михаил Александрович
RU2818821C1
5-[4'-(1'',3''-БЕНЗОКСАЗОЛ-2''-ИЛ)ФЕНИЛ]-10,15,20-ТРИС(4'-СУЛЬФОФЕНИЛ)ПОРФИН В КАЧЕСТВЕ ФЛУОРЕСЦЕНТНОГО СЕНСОРА ДЛЯ ОБНАРУЖЕНИЯ И КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ АЛЬБУМИНА 2022
  • Сырбу Сергей Александрович
  • Лебедева Наталья Шамильевна
  • Юрина Елена Сергеевна
  • Киселёв Алексей Николаевич
  • Лебедев Михаил Александрович
  • Скоробогаткина Ирина Александровна
RU2807912C1
ТЕТРА-4-[4-(2,4,5-ТРИХЛОРФЕНОКСИ)]ФТАЛОЦИАНИН МЕДИ 2017
  • Тихомирова Татьяна Вячеславовна
  • Чеснов Артем Александрович
  • Смирнов Артем Александрович
  • Вашурин Артур Сергеевич
  • Шапошников Геннадий Павлович
RU2667915C1

Реферат патента 2019 года Способ получения сэндвичевых бис(фталоцианинатов) и/или трис(фталоцианинатов) редкоземельных элементов

Изобретение относится к способу одностадийного синтеза сэндвичевых бис(фталоцианинатов) редкоземельных элементов общей формулы (I) и/или трис(фталоцианинатов) редкоземельных элементов общей формулы (II)

(I)

(II).

R и R' могут независимо или одновременно принимать значения H, низший алкил, а также R+R' может быть -ОС(СН3)2О-; Ln = элемент из ряда редкоземельных элементов. Способ осуществляют из монофталоцианинатов редкоземельных элементов общей формулы III

(III),

где Х = галоген, CH3COO, CH3COCHCOCH3, в открытом или замкнутом сосуде при атмосферном или повышенном давлении, соответственно, и температуре 290-430°C с последующим, в случае необходимости, хроматографическим разделением полученных продуктов. Способ позволяет проводить синтез сэндвичевых фталоцианинатов редкоземельных элементов на воздухе или в инертной атмосфере с высокими выходами. 1 табл., 10 пр.

Формула изобретения RU 2 691 011 C1

Способ одностадийного синтеза сэндвичевых бис(фталоцианинатов) редкоземельных элементов общей формулы (I) и/или трис(фталоцианинатов) редкоземельных элементов общей формулы (II)

(I)

(II),

где R и R' могут независимо или одновременно принимать значения H, низший алкил, а также R+R' может быть -ОС(СН3)2О-;

Ln = элемент из ряда редкоземельных элементов;

из соответствующих монофталоцианинатов редкоземельных элементов общей формулы III

(III),

где R и R' могут независимо или одновременно принимать значения H, низший алкил, а также R+R' может быть -ОС(СН3)2О-;

Ln = элемент из ряда редкоземельных элементов;

Х = галоген, CH3COO, CH3COCHCOCH3

в открытом или замкнутом сосуде при атмосферном или повышенном давлении, соответственно, и температуре 290-430°C с последующим, в случае необходимости, хроматографическим разделением полученных продуктов.

Документы, цитированные в отчете о поиске Патент 2019 года RU2691011C1

ISHIKAWA N
et al, Spectroscopic and quantum chemical studies of excited states of one- and two-electron oxidation products of a lutetium triple-decker phthalocyanine complex, Inorganic Chemistry, 1999, v
Способ сужения чугунных изделий 1922
  • Парфенов Н.Н.
SU38A1
Насос 1917
  • Кирпичников В.Д.
  • Классон Р.Э.
SU13A1
Висячий замок 1925
  • Шперк Г.Э.
SU3173A1
PUSHKAREV V.E
et al, Historic overview and new developments in synthetic methods for preparation of the rare-earth tetrapyrrolic complexes, Coordination Chemistry Reviews, 2016, v
Прибор для определения при помощи радиосигналов местоположения движущегося предмета 1921
  • Петровский А.А.
SU319A1
Прибор, автоматически записывающий пройденный путь 1920
  • Зверков Е.В.
SU110A1
PUSHKAREV V.E
et al, Selective synthesis and spectroscopic properties of alkyl-substituted lanthanide(III) mono-, di-, and triphthalocyanines, Russian Chemical Bulletin, Inter
Ed., 2005, v
Видоизменение прибора для получения стереоскопических впечатлений от двух изображений различного масштаба 1919
  • Кауфман А.К.
SU54A1
Разборный с внутренней печью кипятильник 1922
  • Петухов Г.Г.
SU9A1
Прибор для разгонки рельс 1925
  • Тихомиров И.В.
SU2087A1
GAO Y
et al, Bis[1,4,8,11,15,18,22,25-octa(butyloxyl)phthalocyaninato] rare earth double-decker complexes: synthesis, spectroscopy, and molecular structure, Dalton Trans., 2010, v
Машина для изготовления проволочных гвоздей 1922
  • Хмар Д.Г.
SU39A1
Контактный прибор с магнитной стрелкой 1922
  • Павлинов В.Я.
SU1321A1
US 5110916 A, 05.05.1992.

RU 2 691 011 C1

Авторы

Стариков Андрей Сергеевич

Казаченко Владимир Павлович

Пушкарев Виктор Евгеньевич

Даты

2019-06-10Публикация

2018-12-20Подача