СПОСОБ ФОРМИРОВАНИЯ КУЛЬТУРЫ ОПУХОЛЕВЫХ КЛЕТОК, РЕЗИСТЕНТНОЙ К ПРОТОНАМ Российский патент 2019 года по МПК A61K51/00 A61N5/10 

Описание патента на изобретение RU2691853C2

Изобретение относится к онкологии и лучевой терапии и направлено на получение фундаментальных и прикладных данных по реакции опухолевых клеток рецидивов и метастазов, сформированных после ранее проведенного неэффективного курса лучевой терапии к повторному курсу лучевой терапии протонами.

Успех лучевой терапии злокачественных новообразований напрямую зависит от степени радиочувствительности опухолевых клеток. Поэтому исследования, направленные на изучение радиорезистентности опухолевых клеток, имеют решающее значение для разработки более эффективных методов лечения.

Известен способ получения резистентных клеточных линий (Jing, Z. et al. Reverse resistance to radiation in KYSE-150R esophageal carcinoma cell after epidermal growth factor receptor signal pathway inhibition by cetuximab / Z. Jing, L. Gong, C.Y. Xie, L. Zhang, H.F. Su, X. Deng, S.X. Wu // Radiotherapy and Oncology. 2009. V. 93. P. 468-473), где облучение опухолевых клеток карциномы пищевода человека проводили рентгеновским излучением, после чего обновляли питательную среду и культивировали клетки. Процедуру облучения повторяли 12 раз (1 Гр 3 раза, 2 Гр 3 раза и 4 Гр 3 раза) два раза в неделю до общих доз 21 Гр в течение 1,5 месяцев до образования радиорезистентных клеток.

Известен еще один вариант получения резистентных клеток (Xie, L. et al. Fractionated irradiation induced radio-resistant esophageal cancer EC 109 cells seem to be more sensitive to chemotherapeutic drugs / L. Xie, X. Song, J. Yu, L. Wei, B. Song, X. Wang // Journal of Experimental & Clinical Cancer Research. 2009), где клеточную линию сначала выращивали примерно до 60% монослоя, затем клетки подвергали воздействию рентгеновского излучения в дозе 10 Гр, после чего культивировали примерно до 60% монослоя и снова облучали в дозе 10 Гр. Фракционированное облучение продолжались до суммарной дозы 80 Гр. После чего была установлена радиоустойчивая клеточная сублиния.

Похожая методика описана еще в одном исследовании (Fukuda K, Sakakura С, Miyagawa K, Kuriu Y, Kin S, Nakase Y, Hagiwara A, Mitsufuji S, Okazaki Y, Hayashizaki Y, Yamagishi H. Differential gene expression profiles of radioresistant oesophageal cancer cell lines established by continuous fractionated irradiation. Br J Cancer. 2004 Oct 18; 91(8): 1543-50), где линии клеток рака пищевода выращивали примерно до 50% монослоя и подвергали воздействию рентгеновского излучения в дозе 2 Гр и культивировали до 90% монослоя, затем пересевали в новые флаконы. Процедура повторялась до суммарной дозы 60 Гр.

Известен способ получения радиорезистентных опухолевых клеток человека (Shimura, Т. et al. Acquired radioresistance of human tumor cells by DNA-PK/AKT/GSK3b mediated cyclin Dl overexpression / T. Shimura, S. Kakuda, Y. Ochiai, H. Nakagawa, Y. Kuwahara, Y. Takai, J. Kobayashi, K. Komatsu, M. Fukumoto // Oncogene. 2010. N. 29. P. 4826-4837), где клетки подвергали воздействию фракционированного облучения рентгеном в дозе 0,5 Гр каждые 12 ч, 6 дней в неделю.

Общим недостатком представленных выше способов является тип воздействия к которому вырабатывается резистентность - рентгеновское излучение.

Известны и другие способы получения радиорезистентных клеток, так в работе Y. Kuwahara et al. (Kuwahara Y, Li L, Baba T, Nakagawa H, Shimura T, Yamamoto Y, Ohkubo Y, Fukumoto M. Clinically relevant radioresistant cells efficiently repair DNA double-strand breaks induced by X-rays. Cancer Sci. 2009 Apr; 100(4):747-52. doi: 10.1111/j.1349-7006.2009.01082.x. Epub 2009 Feb 2), облучение клеток карциномы печени проводили в дозе 0,5 Гр каждые 12 ч в течение более 6 лет; суммарная доза составляла более 1600 Гр. В другом исследовании (Qing, Y. et al. Microarray analysis of DNA damage repair gene expression profiles in cervical cancer cells radioresistant to 252Cf neutron and X-rays / Y. Qing, X.Q. Yang, Z.Y. Zhong, X. Lei, J.Y. Xie, M.X. Li, D.B. Xiang, Z.P. Li, Z.Z. Yang, G. Wang, D. Wang // BMC Cancer. 2010) для получения двух радиорезистентных клеток линии HeLa в течение 8 месяцев подвергали их непрерывному сублетальному облучению общей дозой 75 Гр с помощью нейтронного излучения 252Cf и рентгеновского излучения. Так же известно исследование, где в режиме фракционирования с дозой 2 Гр в день и 5 дней в неделю в течение 7 месяцев получали резистентные клетки (Wei, K. et al. Radioresistant cell strain of human fibrosarcoma cells obtained after long-term exposure to x-rays / K. Wei, R Kodym., J. Cui-Zheng // Radiat Environ Biophys. 1998. N. 37. P. 133-137).

Среди недостатков данных методов не только тип воздействия к которому вырабатывается резистентность, но и большие временные затраты для достижения результата.

Наиболее близким к заявляемому изобретению - прототипом, является способ предложенный K. Sato и др., где для выработки резистентных клонов использовали клетки плоскоклеочной карциномы NR-S1, которые облучали рентгеновским излучением в дозе 10 Гр 1 раз в две недели (6 Гр⋅экв в неделю) до суммарной дозы 60 Гр (72 Гр⋅экв). После окончательного облучения клетки культивировали в течение 4 недель до тестирующего воздействия рентгеновским излучением и ионами углерода (Sato, K. et al. Heterochromatin domain number correlates with X-ray and carbon-ion radiation resistance in cancer cells / K. Sato, T. Imai, R. Okayasu, T. Shimokawa // Radiation Research. 2014).

Как и в случае выше описанных подходов недостатком данного способа является факт выработки резистентности к ионам углерода. Указанный вид воздействия, так же как и протоны относится к тяжелым заряженным частицам, но обладает значительно более высоким значением относительной биологической эффективности, что не позволяет считать данные для ионов углерода, пригодными для прогнозирования биологических эффектов облучения протонами.

В результате поиска по источникам патентной и научно-технической информации не выявлено сведений о способе формирования радиорезистентной культуре опухолевых клеток, аналогичной заявляемой.

Технический результат направлен на создание культуры клеток с резистентностью к протонам, сформированной длительным фракционированным облучением протонами.

Указанный технический результат при осуществлении изобретения достигается за счет того, что также как и в известном способе проводят облучение в дозе 6 Гр⋅экв, с учетом величины относительной биологической эффективности.

Особенность заявляемого способа заключается в том, что культуру клеток подвергают облучению электронами 1 раз в неделю до суммарной дозы 60 Гр или протонами 1 раз в неделю до суммарной дозы 70 Гр (84 Гр⋅экв).

Изобретение поясняется подробным описанием, примерами исполнения и иллюстрациями, на которых изображено:

Фиг. 1 - Зависимость выживаемости клеток В16 после облучения протонами: В16 - родительская культура клеток; В16-е6 - сублиния, подвергнутая предварительному фракционированному облучению электронами.

Фиг. 2 - Моделирование облучения фракциями по 1, 2 и 4 Гр на основе полученных данных для родительской линии В-16 (пунктирная линия, «p») и ее радиорезистентной сублинии (сплошная линия, «e6-p»).

Фиг. 3 - Выживаемость клеток родительской линии и резистентных клонов при воздействии тестирующего облучения в дозе 4 Гр: белый столбик - родительские клетки, серый - резистентная к протонам сублиния.

Способ осуществляют следующим образом.

Культуру клеток мышиной меланомы В16 подвергают облучению электронами в разовой дозе (РОД) 6 Гр (1 раз в неделю) до суммарной дозы (СОД) 60 Гр или протонами в дозе 5 Гр (1 раз в неделю) суммарной дозы 70 Гр. В день облучения клетки снимают с пластика смесью растворов версена (0,02%) и трипсина (0,25%) в соотношении 1:1, ресуспендируют в среде RPMI-1640, содержащей 10% сыворотки, до получения одиночных клеток. Для облучения клеточную суспензию разливают в микроцентрифужные пробирки типа Эппендорф объемом 1,5 мл (Genfollower, Китай) по 1,3 мл. После облучения клетки подсчитывают в камере Горяева (Минимед, Россия) и высевают в количестве 200 тысяч на чашку Петри диаметром 35 мм (Corning, США). Пересев клеток и замена среды осуществляют при достижении плотности монослоя 90%. Между облучениями клетки культивируют в монослое в чашках Петри диаметром 35 мм (Corning, США) в среде RPMI-1640 (ПанЭко, Россия) с добавлением 10% эмбриональной телячьей сыворотки (Biosera, Франция) и гентамицина в количестве 0,01 мг/мл среды в СО2-инкубаторе (МСО-5АС, Sanyo, Япония) при температуре +37°C и 5% содержании CO2.

Выявленный эффект приобретенной опухолевыми клетками радиорезистентности к протонам может иметь ключевое значение в лучевой терапии с применением этого излучения. Это можно показать моделированием ответа клеток на большое количество фракций на основании кривых, представленных на Фиг. 1. При этом дозовая зависимость состоит из отдельных участков длиной в величину разовой дозы сеанса лучевой терапии. Моделирование для разовых доз 1, 2 и 4 Гр до суммарной дозы 20 Гр (20, 10 и 5 фракций соответственно) (Фиг. 2). Наибольшее отличие наблюдается при фракции в 1 Гр и составляет 5,5 Гр. С увеличением дозы за фракцию (переход к гипофракционированию) разница в эффективности воздействия уменьшается. Таким образом, даже незначительное (но статистически значимое) отклонение дозовой зависимости (при однократном облучении) ранее облученных клеток от кривой для исходных клеток может привести к значительному снижению эффективности облучения при фракционированном воздействии, принятом в лучевой терапии.

Предлагаемый способ подтверждается конкретными примерами использования.

Пример 1. После последнего фракционированного облучения клетки культивировали в течение двух недель. Затем проводили исследование радиочувствительности клеток получивших суммарную дозу электронов 60 Гр к действию протонного излучения методом клоногенной активности. Дозы тестирующего облучения протонами составили 4, 6, 8 Гр. До и после облучения клетки находились на льду. Сравнение проводили с родительской линией, клетки которой облучали теми же излучениями без предварительного воздействия. По результатам исследования был построен график зависимости выживаемости клеток В16 после облучения протонами (Фиг. 1) из которого видно, что кривая выживаемости после облучения протонами располагается ниже кривой выживаемости, где клетки были подвергнуты фракционированному облучению электронами. Применение парного критерия Стьюдента позволило судить о наличии статистически значимого различия в отклике на облучения двух сублиний В16 (Р<0.05).

Пример 2. После окончания фракционированного облучения протонами в суммарное дозе 70 Гр клетки культивировали в течение двух недель по стандартной методике. Затем проводили исследование радиочувствительности клеток к действию протонного излучения методом клоногенной активности. Доза тестирующего воздействия составила 4 Гр. Согласно представленным результатам (Фиг. 3) и данным применения критерия Стьюдента, клетки подверженные длительному фракционированному облучению протонами приобрели резистентность к последующему воздействию протонами.

Таким образом, предложенный способ позволяет эффективно получать резистентную клеточную культуру клеток, преимущество которой заключается в ее устойчивости к воздействию протонного излучения.

Полученная культура клеток может быть использована для проведения сравнительных радиобиологических исследований, направленных на выяснение и уточнение механизмов клеточной радиорезистентности, скрининг противоопухолевых препаратов в аспекте их применения в схемах химиолучевой терапии и на разработку эффективных схем лечения пациентов с рецидивами и метастазами, возникшими после ранее проведенного (неэффективного) курса лучевой терапии.

Похожие патенты RU2691853C2

название год авторы номер документа
СПОСОБ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ДЕЙСТВИЯ ПРОТОННОЙ ТЕРАПИИ НА СТВОЛОВЫЕ КЛЕТКИ МЕЛАНОМЫ 2022
  • Матчук Ольга Николаевна
  • Борейко Алла Владимировна
  • Бугай Александр Николаевич
  • Замулаева Ирина Александровна
  • Каприн Андрей Дмитриевич
  • Корякин Сергей Николаевич
  • Красавин Евгений Александрович
  • Мосина Вера Алексеевна
  • Селиванова Елена Ивановна
  • Соловьев Алексей Николаевич
  • Чаусов Владимир Николаевич
  • Якимова Анна Олеговна
RU2798733C2
СПОСОБ СНИЖЕНИЯ ЖИЗНЕСПОСОБНОСТИ ОПУХОЛЕВЫХ КЛЕТОК 2022
  • Трошина Марина Вячеславовна
  • Потетня Владимир Иванович
  • Корякина Екатерина Владимировна
  • Сабуров Вячеслав Олегович
  • Соловьев Алексей Николаевич
  • Лычагин Анатолий Александрович
  • Корякин Сергей Николаевич
RU2799517C1
Способ повышения эффективности действия ионизирующих излучений на меланому 2021
  • Замулаева Ирина Александровна
  • Борейко Алла Владимировна
  • Бугай Александр Николаевич
  • Каприн Андрей Дмитриевич
  • Корякин Сергей Николаевич
  • Красавин Евгений Александрович
  • Матчук Ольга Николаевна
  • Мосина Вера Алексеевна
  • Селиванова Елена Ивановна
  • Чаусов Владимир Николаевич
RU2774032C1
СПОСОБ ИНГИБИРОВАНИЯ РАДИАЦИОННО-ИНДУЦИРОВАННОГО УВЕЛИЧЕНИЯ КОЛИЧЕСТВА СТВОЛОВЫХ КЛЕТОК РАКА МОЛОЧНОЙ ЖЕЛЕЗЫ ЧЕЛОВЕКА 2022
  • Чурюкина Кристина Александровна
  • Матчук Ольга Николаевна
  • Замулаева Ирина Александровна
  • Коваль Василий Сергеевич
  • Жузе Алексей Львович
  • Арутюнян Альберт Ферроевич
  • Каприн Андрей Дмитриевич
  • Иванов Сергей Анатольевич
RU2800366C2
СПОСОБ ПРОГНОЗИРОВАНИЯ РАДИОЧУВСТВИТЕЛЬНОСТИ ЗЛОКАЧЕСТВЕННЫХ НОВООБРАЗОВАНИЙ ВЕРХНИХ ДЫХАТЕЛЬНЫХ ПУТЕЙ 2020
  • Замулаева Ирина Александровна
  • Селиванова Елена Ивановна
  • Андреев Вячеслав Георгиевич
RU2735982C2
СПОСОБ СНИЖЕНИЯ КЛОНОГЕННОЙ АКТИВНОСТИ СТВОЛОВЫХ КЛЕТОК РАКА МОЛОЧНОЙ ЖЕЛЕЗЫ 2019
  • Замулаева Ирина Александровна
  • Чурюкина Кристина Александровна
  • Жузе Алексей Львович
  • Иванов Александр Александрович
RU2700695C2
СПОСОБ ИНДУКЦИИ АБСКОПАЛЬНОГО ПРОТИВООПУХОЛЕВОГО ЭФФЕКТА В ЭКСПЕРИМЕНТАЛЬНОЙ МОДЕЛИ КАРЦИНОМЫ ЭРЛИХА 2020
  • Гривцова Людмила Юрьевна
  • Исаева Валентина Григорьевна
  • Жовтун Людмила Петровна
  • Иванов Сергей Анатольевич
  • Каприн Андрей Дмитриевич
RU2736120C2
СПОСОБ ЛЕЧЕНИЯ ПЛОСКОКЛЕТОЧНОГО РАКА ПОЛОСТИ РТА И ГЛОТКИ 2019
  • Бойко Анна Владимировна
  • Геворков Артем Рубенович
  • Плавник Руслан Наильевич
  • Багова Сузанна Зауровна
  • Хмелевский Евгений Витальевич
  • Каприн Андрей Дмитриевич
RU2715550C2
СПОСОБ ПРОТОННОЙ ТЕРАПИИ СОЛИДНОЙ КАРЦИНОМЫ ЭРЛИХА 2023
  • Филимонова Марина Владимировна
  • Корякин Сергей Николаевич
  • Филимонов Александр Сергеевич
  • Шитова Анна Андреевна
  • Солдатова Ольга Васильевна
  • Рыбачук Виталий Александрович
  • Николаев Кирилл Анатольевич
  • Косаченко Александр Олегович
  • Каприн Андрей Дмитриевич
  • Завестовская Ирина Николаевна
RU2808984C1
СПОСОБ КОМБИНИРОВАННОЙ ЛУЧЕВОЙ И ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ 2019
  • Гамаюнов Сергей Викторович
  • Корчагина Ксения Сергеевна
  • Южаков Вадим Васильевич
  • Корякин Сергей Николаевич
  • Каплан Михаил Александрович
  • Сабуров Вячеслав Олегович
  • Шегай Петр Викторович
  • Иванов Сергей Анатольевич
  • Каприн Андрей Дмитриевич
RU2724480C2

Иллюстрации к изобретению RU 2 691 853 C2

Реферат патента 2019 года СПОСОБ ФОРМИРОВАНИЯ КУЛЬТУРЫ ОПУХОЛЕВЫХ КЛЕТОК, РЕЗИСТЕНТНОЙ К ПРОТОНАМ

Изобретение относится к онкологии и лучевой терапии и направлено на получение фундаментальных и прикладных данных по реакции опухолевых клеток рецидивов и метастазов, сформированных после ранее проведенного неэффективного курса лучевой терапии, к повторному курсу лучевой терапии протонами. Способ формирования культуры опухолевых клеток, резистентной к протонам, включает облучение в дозе 6 Гр⋅экв, с учетом величины относительной биологической эффективности, при этом культуру клеток подвергают облучению электронами 1 раз в неделю до суммарной дозы 60 Гр или протонами 1 раз в неделю до суммарной дозы 70 Гр (84 Гр⋅экв). Использование изобретения позволяет проводить сравнительные радиобиологические исследования, направленные на выяснение и уточнение механизмов клеточной радиорезистентности, скрининг противоопухолевых препаратов в аспекте их применения в схемах химиолучевой терапии и разработать эффективные схемы лечения пациентов с рецидивами и метастазами, возникшими после ранее проведенного неэффективного курса лучевой терапии. 3 ил.

Формула изобретения RU 2 691 853 C2

Способ формирования культуры опухолевых клеток, резистентной к протонам, включающий облучение в дозе 6 Гр⋅экв, с учетом величины относительной биологической эффективности, отличающийся тем, что культуру клеток подвергают облучению электронами 1 раз в неделю до суммарной дозы 60 Гр или протонами 1 раз в неделю до суммарной дозы 70 Гр (84 Гр⋅экв).

Документы, цитированные в отчете о поиске Патент 2019 года RU2691853C2

Katsutoshi Sato et al, Heterochromatin Domain Number Correlates with X-Ray and Carbon-IonRadiation Resistance in Cancer Cells, RADIATION RESEARCH 182, 408-419 (2014)
Н.В.Наседкина и др
Устройство для электрической сигнализации 1918
  • Бенаурм В.И.
SU16A1
Wei, K
et al
Radioresistant cell strain of human fibrosarcoma cells obtained after long-term exposure to x-rays, Radiat Environ Biophys
Способ и аппарат для получения гидразобензола или его гомологов 1922
  • В. Малер
SU1998A1
no
Пишущая машина 1922
  • Блок-Блох Г.К.
SU37A1
Топочная решетка для многозольного топлива 1923
  • Рогинский С.А.
  • Шалабанов А.А.
SU133A1
Y
Kuwahara et al
Clinically relevant radioresistant cells efficiently repair DNA double-strand breaks induced by X-rays
Cancer Sci
Колосоуборка 1923
  • Беляков И.Д.
SU2009A1
Бекетов Е.Е
и др
Паровоз для отопления неспекающейся каменноугольной мелочью 1916
  • Драго С.И.
SU14A1

RU 2 691 853 C2

Авторы

Бекетов Евгений Евгеньевич

Исаева Елена Васильевна

Наседкина Надежда Валерьевна

Ульяненко Степан Евгеньевич

Шегай Петр Викторович

Иванов Сергей Анатольевич

Каприн Андрей Дмитриевич

Даты

2019-06-18Публикация

2018-12-05Подача