Способ измерения пеленгационных ошибок системы антенна-обтекатель радиолокационной станции Российский патент 2019 года по МПК G01R29/10 

Описание патента на изобретение RU2697883C1

Предлагаемое изобретение относится к авиационной технике, в частности, к радиолокационным устройствам, и может быть использовано для компенсации пеленгационных ошибок системы антенна-обтекатель бортовой радиолокационной станции (БРЛС), включающей в себя антенну с электронным управлением лучом, к которым относятся ФАР или АФАР. Известен способ компенсации пеленгационных ошибок антенна-обтекатель [Пригода В. А. и др. «Обтекатели антенн летательных аппаратов»-М.Машиностроение, 1970 г., стр. 265-268; «Методы измерения характеристик антенн СВЧ.» Под ред. Н.М. Цейтлина. М. Радиоисвязь, 1985, стр. 334], состоящий в замере на стенде вносимых обтекателем ошибок пеленгации и их фиксации для разных угловых значений с последующим использованием замеренных величин в качестве вычитаемых поправок при пеленгации целей БРЛС в составе самолета. Основными недостатками способа является возможность измерения только одной из составляющих угловой ошибки пеленга и только по двум ортогональным сечениям обтекателя.

Указанный недостаток устранен в способе измерения пеленгационных ошибок систем антенна-обтекатель самолета с установленной на нем бортовой радиолокационной станцией [RU 2465611 С1 опубл. 27.10.2012 г. МПК G01R 29/10], который является наиболее близким по технической сущности к предлагаемому изобретению и состоящий в измерении углового смещения равносигнального направления антенны на заданном угле поворота антенны с обтекателем и определении пеленгационных ошибок в зависимости от угла поворота. При этом одновременно производят измерение бортовой радиолокационной станцией углов пеленгации установленных на земле радиолокационных отражателей антенны и определение эталонных углов пеленгации путем пересчета известных геодезических координат (широты, долготы и высоты h) радиолокационных отражателей и текущих геодезических координат самолета, формируемых его навигационной системой, а определение пеленгационных ошибок производят вычислением разницы между эталонными углами пеленгации и величинами углов пеленгации, измеренными БРЛС. По завершении пеленгации наземных радиолокационных отражателей производят расчет эталонных величин азимута (АЗэт) и угла места (УМэт) путем решения обратной геодезической задачи для каждой точки траектории полета, где БРЛС пеленгует наземные радиолокационные отражатели, и расчет ошибок пеленгации путем вычитания из замеренных БРЛС значений A3 и УМ эталонных углов пеленгации. Расчет углов пеленгации из геодезических координат носит название «обратной геодезической задачи в пространственной системе координат».

Недостатками прототипа являются:

1. Для всех возможных углов установки луча АС в системе антенна-обтекатель, данный способ потребовал бы от самолета-носителя БРЛС очень сложных ракурсов полета, что делает данный способ практически неприемлемым для измерения УОП по всей поверхности обтекателя.

2. Обеспечение проведения полномасштабных испытаний по данному способу в целом является весьма затратным.

Задачей изобретения является достижение возможности измерения угловых ошибок пеленга (УОП), вносимых обтекателем, в различных условиях проведения измерений (компактный полигон, дальняя зона), что существенно упрощает и удешевляет работы по компенсации ошибок пеленгации системы антенна-обтекатель БРЛС.

Техническим результатом предлагаемого способа измерения пеленгационных ошибок системы антенна-обтекатель является возможность оценить составляющие пеленгационной ошибки по значительно большей произвольной поверхности обтекателя.

Сущность предлагаемого способа измерения пеленгационных ошибок систем антенна-обтекатель радиолокационной станции, основана на измерении углового смещения минимума, формируемого разностными ДН антенны на всех возможных углах поворота системы антенна-обтекатель, установленной на опорно-поворотном устройстве антенн (ОПУА) по крену и азимуту, и определении пеленгационных ошибок в зависимости от этих углов.

Новым в предлагаемом способе является то, до установки обтекателя азимутальная плоскость сканирования опорно-поворотного устройства антенны с установленной на ней на угле крена Ψj-ФАР, юстируется таким образом, чтобы азимутальная плоскость сканирования опорно-поворотного устройства антенны совпадала с горизонтальной плоскостью, после чего, луч ФАР устанавливается по координатам и , вводимым в блок управления лучом ФАР и рассчитываемыми по выбранному нами углу крена ψj, и произвольному углу отклонения луча от нормали θoi из всего возможного диапазона отклонений луча для конкретной ФАР по формулам , что делает возможным, путем азимутального сканирования ОПУА от центрального угла (-θoi), одновременно измерить горизонтальные сечения обеих разностных ДН, где их измеряемые угловые координаты минимумов - совпадают на всех возможных для данной ФАР углах отклонения луча от нормали θoi, после чего, все измерения повторяются на других выбранных нами углах крена ФАР, а после установки обтекателя и проведении соответствующих измерений по тем же, что и до его установки углам крена и углам отклонения луча от нормали, по изменившимся угловым координатам минимумов в сечениях разностных ДН системы ФАР-обтекатель, соответствующие составляющие пеленгационной ошибки в координатах αх и αу, вносимые обтекателем на углах Ψjoi установки системы ФАР-обтекатель, могут быть рассчитаны по формулам:

где:

составляющая пеленгационной ошибки, вносимой обтекателем, по углу ах при установки луча ФАР по координатам θ=θoi; Ψ=Ψj.

составляющая пеленгационной ошибки, вносимой обтекателем, по углу ау при установки луча ФАР по координатам θ=θoi; Ψ=Ψj.

θoi одно из произвольно установленных текущих значений пространственного угла между направлением установки луча ФАР и нормалью к ее раскрыву, на котором, до установки обтекателя, измеряемые минимумы горизонтальных сечений разностных диаграмм - совпадают.

Ψj текущее заданное значение угла крена ФАР относительно горизонтальной плоскости азимутального сканирования опорно-поворотного устройства антенны.

θai измеренный, после установки обтекателя, фактический угол минимума горизонтального сечения разностной азимутальной диаграммы, при установки луча ФАР по координатам θ=θoi; Ψ=Ψj,;

θyi измеренный, после установки обтекателя, фактический угол минимума горизонтального сечения разностной угломестной диаграммы при установки луча ФАР по координатам θ=θoi; Ψ=Ψj,;

На фиг. 1 схематично показана антенна с обтекателем, размещенная на ОПУА, где:

где:

1 - раскрыв антенны;

2 - центр сферической системы координат антенны (θ,Ψ) и связанной с ним декартовой системы (X,Y,Z);

3 - управляющий угол Lx в системе координат антенны (X,Y,Z) между осью X направлением одной из возможных установок луча ФАР;

4 - управляющий угол Ly в системе координат антенны (X,Y,Z) между осью Y и направлением одной из возможных установок луча ФАР;

5 - угол Ψj установки антенны по крену (он же угол Ψ в сферической системе координат антенны);

6 - направление одной из возможных установок луча ФАР, в горизонтальной плоскости сканирования ОПУА;

7 - нормаль к раскрыву антенны;

8 - текущее значение угла θi, между нормалью к раскрыву ФАР и направлением одной из возможных установок луча (он же угол θ в сферической системе координат АС);

9 - условная ось обтекателя;

10 - условные контуры поверхности обтекателя;

11 - ось азимутального поворота ОПУА с установленной системой ФАР-обтекатель;

12 - плоскость сечения поверхности обтекателя (при угле крена Ψj), совпадающая с горизонтальной плоскостью азимутального поворота ОПУА;

13 - условные точки на поверхности обтекателя, по которым измеряются составляющие УОП при угле крена Ψj;

14 - плоскость азимутального поворота ОПУА точно совпадающая с горизонтальной;

На фиг. 2 в системе координат направляющих косинусов (u,v) показаны сечения пространственных разностных ДН до (точка 1) и после (точка 2) установки обтекателя для системы ФАР-обтекатель на угле крена Ψ;

На фиг. 3 представлены фото сечений обеих разностных ДН экрана монитора измерительного комплекса до (а) и после (б) установки обтекателя для системы ФАР-обтекатель на угле крена Ψ;

На фиг. 4 показан набор сечений по которым происходит измерение УОП при различных углах установки системы ФАР-обтекатель по крену;

На фиг. 1 угловые координаты αх и αу, передаваемые из вычислителя станции связаны с управляющими углами Lx; Ly и углами Ψ, θ сферической системы координат антенны соотношениями (1) и (2):

Известно также, что «линии нулевых уровней» ДН разностных каналов плоских ФАР, отображаются в системе координат направляющих косинусов (u,v) прямыми линиями вдоль осей u или v. На фиг. 2 схематически представлены разностные ДН в области сканирования луча ФАР, в системе координат направляющих (управляющих) косинусов (U=cosLx; V=cosLy) для двух случаев, до установки обтекателя на антенну и после установки, что соответствует двум характерным точкам на фиг. 2:

Точка 1-е координатами (u0, v0), соответствует точной установки луча ФАР по координатам θo,Ψ, в которой измеряемые минимумы обеих разностных ДН до установки обтекателя - совпадают;

Точка 2 - одна из возможных точек с координатами (u1, v1), соответствует изменившемуся направлению пеленга, вызванному установкой обтекателя;

Тогда учитывая (1-2), а так же то, что:

и

для одного из произвольных углов установки луча ФАР, при θ=θoi; Ψ=Ψj для составляющих УОП Δαх и Δαу (в системе координат переменных θ, Ψ) получим:

где:

составляющая пеленгационной ошибки, вносимой обтекателем, по углу αх передаваемому в блок управления лучом ФАР при θ=θoi; Ψ=Ψj.

составляющая пеленгационной ошибки, вносимой обтекателем, по углу αу передаваемому в блок управления лучом ФАР при θ=θoi; Ψ=Ψj.

θoi одно из произвольно установленных текущих значений пространственного угла между направлением установки луча ФАР и нормалью к ее раскрыву (из возможного диапазона отклонений луча от нормали для конкретной ФАР), на котором, до установки обтекателя, измеряемые минимумы горизонтальных сечений разностных диаграмм - совпадают. Соответствует углу θ в сферической системе координат антенны;

Ψj текущее заданное значение угла крена ФАР относительно горизонтальной плоскости азимутального сканирования опорно-поворотного устройства антенны. Соответствует углу Ψ в сферической системе координат АС;

θai измеренный, фактический угол минимума горизонтального сечения разностной азимутальной диаграммы (при θ=θoi; Ψ=Ψj) после установки обтекателя;

θyi измеренный, фактический угол минимума горизонтального сечения разностной угломестной диаграммы (при θ=θoi; Ψ=Ψj) после установки обтекателя;

Измерение составляющих пеленгационных ошибок фиг. 1 производится следующим образом. ФАР (1), сначала без обтекателя (10), устанавливается на ОПУА на произвольный фиксированный угол крена Ψj - (5). При произвольно выбранном пространственном угле отклонения θi - (8), из возможного диапазона углов отклонения для данной ФАР, по формуле (1) рассчитываются управляющие углы Lx (3) и Ly (4), а по формуле (2) координаты фазирования ФАР - αх и αу. В дальнейшем, при фазировании ФАР по расчитываемым подобным образом координатам αх и αу, для различных значений угла θi, направление установки луча (6), каждый раз попадает в плоскость азимутального поворота ОПУА (2). В этом случае, при незначительном сканировании ОПУА по оси азимута (11), в области угла (-θi), одновременно могут быть измерены угловые координаты минимумов горизонтальных сечений обеих разностных диаграмм. При правильной юстировки ОПУА, т.е. совпадении плоскости его азимутального поворота, с горизонтальной, до установки обтекателя на антенну, в точках (13), где происходит измерение составляющих УОП, измеряемые минимумы разностных диаграмм - совпадают, как показано на фиг. 3(а). После установки обтекателя на антенну, на тех же углах установки измеряются новые, изменившиеся координаты минимумов разностных ДН как показано на фиг. 3(б). В дальнейшем, по величине и знакам этого рассогласования, по формулам (14-15), приведенным выше, могут быть рассчитаны обе компоненты пеленгационной ошибки и (для углов αх αу передаваемых в систему управления ФАР в координатах переменных θ, Ψ). Подобные измерения могут быть проведены по всей поверхности обтекателя, т.е. при установке системы антенна-обтекатель на других заданных углах крена, где минимумы разностных диаграмм еще могут быть измерены, и всем возможным, для конкретной ФАР, углам отклонения луча (8), как показано на фиг. 4.

Похожие патенты RU2697883C1

название год авторы номер документа
Способ измерения пеленгационных ошибок системы ФАР-обтекатель радиолокационной станции 2019
  • Макушкин Игорь Евгеньевич
  • Лавровский Дмитрий Дмитриевич
  • Винтер Дмитрий Валерьевич
  • Джуромский Михаил Альбертович
RU2730096C1
СИСТЕМА И СПОСОБ СЛЕЖЕНИЯ АНТЕННОЙ СИСТЕМЫ ЗЕМНОЙ СТАНЦИИ ПОДВИЖНОЙ СПУТНИКОВОЙ СВЯЗИ 2023
  • Глазкова Инесса Анатольевна
  • Жорник Владимир Владимирович
  • Камнев Вячеслав Евгеньевич
  • Козлов Андрей Альбертович
  • Прилуцкий Андрей Алексеевич
  • Сидорчук Евгений Александрович
RU2821956C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННЫХ УГЛОВЫХ КООРДИНАТ РАДИОСИГНАЛА В АМПЛИТУДНЫХ МОНОИМПУЛЬСНЫХ ПЕЛЕНГАЦИОННЫХ СИСТЕМАХ 2016
  • Бахирев Валерий Николаевич
  • Чабан Александр Викторович
RU2625349C1
ИСПОЛЬЗОВАНИЕ ТРАНСФУНКЦИЙ ДЛЯ РЕШЕНИЯ АНТЕННЫХ ЗАДАЧ 2012
  • Поволоцкий Феликс Константинович
  • Сидорова Татьяна Павловна
RU2580443C2
Система сопровождения целей и ракет зенитной боевой машины 2019
  • Слугин Валерий Георгиевич
  • Зубарев Александр Анатольевич
  • Шевцов Олег Юрьевич
  • Зенов Борис Владиславович
  • Романовский Александр Сергеевич
  • Стручалин Валентин Павлович
RU2710994C1
Способ высокоточной пеленгации постановщика многократной ответно-импульсной помехи 2020
  • Кузнецов Кирилл Евгеньевич
  • Корягин Михаил Григорьевич
  • Лаврентьев Александр Михайлович
  • Пустозеров Павел Васильевич
  • Кириченко Александр Андреевич
RU2740296C1
Способ пеленгации источников излучения, основанный на анализе корреляционной матрицы сигналов, в радиолокационных станциях с фазированной антенной решеткой с пространственным возбуждением и системой облучателей с цифровым выходом 2022
  • Бабушкин Евгений Александрович
  • Калашников Роман Васильевич
  • Лаврентьев Александр Михайлович
RU2791285C1
Способ определения направления на цель цифровой антенной решеткой моноимпульсной радиолокационной станции 2021
  • Мищенко Сергей Евгеньевич
  • Шацкий Виталий Валентинович
  • Шацкий Николай Витальевич
RU2761106C1
Способ определения координат целей с помощью аппроксимированной пеленгационной характеристики 2021
  • Герман Владимир Ильич
  • Елисюткин Григорий Анатольевич
  • Поликашкин Роман Васильевич
RU2777849C1
Пеленгатор источника радиоизлучения с широкоугольным коническим сканированием 2016
  • Анцев Георгий Владимирович
  • Блудов Александр Александрович
  • Борщин Сергей Александрович
  • Горбатовский Глеб Александрович
  • Капылов Евгений Леонидович
  • Павлов Владислав Станиславович
  • Суворов Александр Федорович
RU2616597C1

Иллюстрации к изобретению RU 2 697 883 C1

Реферат патента 2019 года Способ измерения пеленгационных ошибок системы антенна-обтекатель радиолокационной станции

Изобретение относится к радиолокационной технике. Способ основан на измерении углового смещения пространственного положения минимума, формируемого разностными ДН антенны на заданных углах поворота ее по азимуту и крену и определении пеленгационных ошибок в зависимости от этих углов. До установки обтекателя азимутальная плоскость сканирования опорно-поворотного устройства антенны (ОПУА) с установленной на ней на угле крена Ψj фазированной антенной решеткой, юстируется таким образом, чтобы азимутальная плоскость сканирования опорно-поворотного устройства антенны совпадала с горизонтальной плоскостью, после чего луч фазированной антенной решетки устанавливается по координатам и , вводимым в блок управления лучом ФАР и рассчитываемым по выбранному углу крена Ψj, и произвольному углу отклонения луча от нормали θoi из всего возможного диапазона отклонений луча для конкретной ФАР по формулам , что делает возможным, путем азимутального сканирования ОПУА от центрального угла (-θоi), одновременно измерить горизонтальные сечения обеих разностных ДН, где их измеряемые угловые координаты минимумов совпадают на всех возможных для данной ФАР углах отклонения луча от нормали θoi, после чего все измерения повторяются на других выбранных углах крена ФАР, а после установки обтекателя и проведения соответствующих измерений по тем же, что и до его установки, углам крена и углам отклонения луча от нормали, по изменившимся угловым координатам минимумов в сечениях разностных ДН системы ФАР-обтекатель соответствующие составляющие пеленгационной ошибки в координатах αх и αу, вносимые обтекателем на углах Ψjoi установки системы ФАР-обтекатель, могут быть рассчитаны по формулам:

,

где:

- составляющая пеленгационной ошибки, вносимой обтекателем, по углу αх при установке луча ФАР по координатам θ=θoi; Ψ=Ψj,

- составляющая пеленгационной ошибки, вносимой обтекателем, по углу αу при установке луча ФАР по координатам θ=θоi, Ψ=Ψj,

θoi - одно из произвольно установленных текущих значений пространственного угла между направлением установки луча ФАР и нормалью к ее раскрыву, на котором, до установки обтекателя, измеряемые минимумы горизонтальных сечений разностных диаграмм совпадают,

Ψj - текущее заданное значение угла крена ФАР относительно горизонтальной плоскости азимутального сканирования опорно-поворотного устройства антенны,

θai - измеренный, после установки обтекателя, фактический угол минимума горизонтального сечения разностной азимутальной диаграммы при установке луча ФАР по координатам θ=θоi; Ψ=Ψj,

θyi - измеренный, после установки обтекателя, фактический угол минимума горизонтального сечения разностной угломестной диаграммы при установке луча ФАР по координатам θ=θoi; Ψ=Ψj. 4 ил.

Формула изобретения RU 2 697 883 C1

Способ измерения пеленгационных ошибок систем антенна-обтекатель радиолокационной станции, основанный на измерении углового смещения пространственного положения минимума, формируемого разностными диаграммами направленности антенны на заданных углах поворота ее по азимуту и крену и определении пеленгационных ошибок в зависимости от этих углов, отличающийся тем, что до установки обтекателя азимутальная плоскость сканирования опорно-поворотного устройства антенны (ОПУА) с установленной на ней на угле крена Ψj фазированной антенной решеткой юстируется таким образом, чтобы азимутальная плоскость сканирования опорно-поворотного устройства антенны совпадала с горизонтальной плоскостью, после чего луч фазированной антенной решетки устанавливается по координатам и , вводимым в блок управления лучом ФАР и рассчитываемым по выбранному углу крена Ψj, и произвольному углу отклонения луча от нормали θoi из всего возможного диапазона отклонений луча для конкретной ФАР по формулам , что делает возможным, путем азимутального сканирования ОПУА от центрального угла (-θoi), одновременно измерить горизонтальные сечения обеих разностных ДН, где их измеряемые угловые координаты минимумов совпадают на всех возможных для данной ФАР углах отклонения луча от нормали θoi, после чего все измерения повторяются на других выбранных углах крена ФАР, а после установки обтекателя и проведения соответствующих измерений по тем же, что и до его установки, углам крена и углам отклонения луча от нормали, по изменившимся угловым координатам минимумов в сечениях разностных ДН системы ФАР-обтекатель, соответствующие составляющие пеленгационной ошибки в координатах αх и αу, вносимые обтекателем на углах Ψj, θoi установки системы ФАР-обтекатель, могут быть рассчитаны по формулам:

,

где:

- составляющая пеленгационной ошибки, вносимой обтекателем, по углу αх при установке луча ФАР по координатам θ=θoi; Ψ=Ψj,

- составляющая пеленгационной ошибки, вносимой обтекателем, по углу αy при установке луча ФАР по координатам θ=θoi; Ψ=Ψj,

θoi - одно из произвольно установленных текущих значений пространственного угла между направлением установки луча ФАР и нормалью к ее раскрыву, на котором, до установки обтекателя, измеряемые минимумы горизонтальных сечений разностных диаграмм совпадают,

Ψj - текущее заданное значение угла крена ФАР относительно горизонтальной плоскости азимутального сканирования опорно-поворотного устройства антенны,

θai - измеренный, после установки обтекателя, фактический угол минимума горизонтального сечения разностной азимутальной диаграммы при установке луча ФАР по координатам θ=θoi; Ψ=Ψj,

θyi - измеренный, после установки обтекателя, фактический угол минимума горизонтального сечения разностной угломестной диаграммы при установке луча ФАР по координатам θ=θoi; Ψ=Ψj.

Документы, цитированные в отчете о поиске Патент 2019 года RU2697883C1

СПОСОБ ИЗМЕРЕНИЯ ПЕЛЕНГАЦИОННЫХ ОШИБОК СИСТЕМ АНТЕННА-ОБТЕКАТЕЛЬ САМОЛЕТА С УСТАНОВЛЕННОЙ НА НЕМ БОРТОВОЙ РАДИОЛОКАЦИОННОЙ СТАНЦИЕЙ 2011
  • Чезганов Николай Федорович
  • Фролов Алексей Юрьевич
RU2465611C1
СПОСОБ ИЗМЕРЕНИЯ ПЕЛЕНГАЦИОННЫХ ОШИБОК СИСТЕМ АНТЕННА-ОБТЕКАТЕЛЬ 1999
  • Столбовой В.С.
RU2162232C1
УСТРОЙСТВО СОПРОВОЖДЕНИЯ С КОМПЕНСАЦИЕЙ ПЕЛЕНГАЦИОННЫХ ОШИБОК СИСТЕМЫ АНТЕННА - ОБТЕКАТЕЛЬ 2005
  • Берсенев Вячеслав Павлович
  • Сосновский Вячеслав Александрович
  • Столбовой Валерий Стефанович
  • Сухов Анатолий Михайлович
RU2284534C1
JP 2011122892 A, 23.06.2011
JP 6138199 A, 20.05.1994.

RU 2 697 883 C1

Авторы

Макушкин Игорь Евгеньевич

Дорофеев Александр Евгеньевич

Грибанов Александр Николаевич

Гаврилова Светлана Евгеньевна

Даты

2019-08-21Публикация

2019-01-09Подача