Способ радионуклидной диагностики операбельного рака молочной железы с гиперэкспрессией Her2/neu Российский патент 2019 года по МПК A61B6/03 A61K51/00 A61K103/10 A61P43/00 

Описание патента на изобретение RU2702294C1

Изобретение относится к области медицины, онкологии и может быть использовано для радионуклидной диагностике операбельного рака молочной железы с гиперэкспрессией Her2/neu.

В последние годы все большую популярность получают таргетные радионуклидные методы диагностики злокачественных заболеваний, обладающие высокой специфичностью к различным молекулярным мишеням и позволяющие визуализировать опухолевые очаги различных размеров (как основной опухолевый узел, так и метастатические очаги) [Чернов В.И., Братина О.Д., Синилкин И.Г. и соавт. Радиоиммунотерапия: современное состояние проблемы // Вопросы онкологии. 2016. Т. 62. №1. С. 24-26]. Для обеспечения направленной доставки радионуклидов необходимо использование молекул, имеющих ряд обязательных характеристик, таких как, связывание исключительно с «таргетным» антигеном для специфической локализации, отсутствие иммуногенности, стабильность и возможность быстрой химической модификации для проведения процессов мечения [Nicholes N., Date A., Beaujean P. et.al. Modular protein switches derived from antibody mimetic proteins // Protein Engineering, Design and Selection. 2016. Vol. 29. P. 77-85]. Также для медицинской визуализации существенным является скорость связывания с мишенью и быстрое удаление несвязавшихся молекул из организма пациента для достижения высокого качества визуализации опухоли и сокращения временного промежутка между инъекцией и началом исследования [Boersma Y.L., Pluckthun A. DARPins and other repeat protein scaffolds: advances in engineering and applications // Curr. Opin. Biotechnol. 2011. Vol. 22. P. 849-57]. В настоящее время для этих целей используются новые молекулярные структуры, получившие название «альтернативных каркасных белков» и отвечающие всем требованиям для оптимальной доставки радионуклида к опухолевым клеткам [Lindbo S., Garousi J., Mitran В. et.al. Radionuclide Tumor Targeting Using ADAPT Scaffold Proteins: Aspects of Label Positioning and Residualizing Properties of the Label // J. Nucl. Med. 2018. Vol. 59. №1. P. 93-99]. Одним из представителей адресных молекул неиммуноглобулиновой природы является DARPin (Design Ankyrin Repeat Protein), к преимуществам которого относятся небольшой размер (14-20 кДа) [ A. Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy // Annu Rev Pharmacol Toxicol. 2015. Vol. 55. P. 489-511], стабильная структура, высокая специфичность и аффинность к антигену, а также значительно более низкая стоимость производства, обусловленная их экспрессией в бактериальных средах [Kramer L, Renko М, J, Turk D, Seeger MA, Vasiljeva О et.al Non-invasive in vivo imaging of tumour-associated cathepsin В by a highly selective inhibitory DARPin. Theranostics. 2017; 8: 2806-2821].

Наиболее часто используемым радионуклидом для проведения диагностических исследований как на территории Российской Федерации, так и в мире, остается короткоживущий ( ч) технеций-99м (99mTc). Как правило, технециевые радиофармпрепараты (РФП) изготавливаются в виде стандартных наборов реагентов (лиофилизатов) к генератору технеция-99м, которые представляют собой приготовленные методом сублимационной сушки при низких температурах смеси [Лыков А.В. Сублимационная сушка // В кн.: Теория сушки. - М., Энергия. -1968. - С. 334-362]. При их смешивании с выделенного из генератора элюатом технеция-99м (раствор натрия пертехнетата, 99mTc), получается готовый РФП с заданными свойствами. Срок годности лиофилизатов обычно составляет 1 год.

Одной из наиболее изучаемых молекулярных мишеней по-прежнему остается рецептор эпидермального роста Her2/neu, гиперэкспрессия которого определяется на поверхности опухолевых клеток (преимущественно рака молочной железы, реже рака яичников, желудка, простаты и пр.) и характеризуется неблагоприятным прогнозом относительно безрецидивной и общей выживаемости [Slamon D.J., Clark G.M., Wong S.G. et.al. Human breast cancer: correlation of relapse a survival with amplification of the Her-2/neu oncogenes // Science. 1987. Vol. 235. P. 177-182]. Применяемые в настоящее время методы диагностики для определения статуса Her2/neu обычно требуют инвазивного вмешательства, в большинстве случаев имеют субъективный характер, обусловленный квалификацией персонала, освоением им сложной методологии, а также характеризуются невозможностью выполнения исследования in vivo с оценкой распространенности опухолевого процесса (состояние опухолевого узла, регионарных лимфатических узлов и отдаленных органов и тканей).

Наиболее близким к предлагаемому является способ диагностики рака молочной железы с гиперэкспрессией Her2/neu с использованием меченных индием-111 альтернативных каркасных белков аффибоди (111In-ABY-025). Применяемый в известном способе радиофармацевтический препарат является специфическим и фиксируется на поверхности мембран опухолевых клеток, экспрессирующих Her2/neu, что позволяет их визуализировать как основной опухолевый узел, так и метастатические очаги [Sorensen J., Sandberg D., Sandstrom M., et.al. First-in-Human Molecular Imaging of HER2 Expression in Breast Cancer Metastases Using the 111In-ABY-025 Affibody Molecule // Tee Journal of Nuclear Medicine. 2014. Vol. 55 (5). P. 730-735]. Основным недостатком данного метода являются неоптимальные радиологические характеристики препарата, связанные с длительным периодом полураспада ( сут) и следовательно высокой дозой облучения на обследуемого, высокой стоимостью циклотронного производства, а также наличием в его спектре облучения высокоэнергетических гамма-квантов, препятствующих получению качественных сцинтиграфических изображений. Существенным недостатком также является недоступность получения аффибоди на территории Российской Федерации.

Новый технический результат - повышение специфичности и информативности и доступности диагностики операбельного рака молочной железы с гиперэкспрессией Her2/neu.

Для достижения нового технического результата в способе диагностики операбельного рака молочной железы с гиперэкспрессией Her2/neu пациентам, включающем внутривенное введение радиофармацевтического препарата(РФП) с последующим проведением однофотонной эмиссионной компьютерной томографии, вводят инъекционную форму радиофармпрепарата на основе меченных технецием-99m рекомбинантных адресных молекул DARPin9_29, который изготавливают непосредственно перед введением, для чего в асептических условиях 1 мл элюата 99mTcO4- 7 ГБк с помощью шприца добавляют в набор для приготовления трикарбонильного технеция и инкубируют при температуре 100°С в течение 30 минут, после инкубации 1000 мкл трикарбонила технеция добавляют к 334 мкл DARPin9_29 при концентрации раствора основного вещества 3,6 мг/л и инкубируют при температуре 40°С в течение 60 минут, далее выполняют очистку полученного соединения от белковых примесей и несвязавшихся с технецием молекул DARPin9_29 с помощью очистительных колонок, полученный после очищения препарат в дозе 500 МБк разбавляют в 10 мл физиологического раствора и через стерилизующий фильтр медленно вводят пациенту, через 4 часа после введения препарата пациенту выполняют однофотонную эмиссионную компьютерную томографию на двух детекторной гамма-камере, оценивают полученные результаты и при визуализации участков гиперфиксации РФП в ткани молочных желез диагностируют злокачественную опухоль.

Способ осуществляют следующим образом, радиофармацевтический препарат готовят непосредственно перед введением: в набор «CRS Isolink» (Center for Radiopharmaceutical Science, Paul Scherrer Institute, Villigen, Швейцария) для приготовления трикарбонила технеция [99mTc(СО)3(H2O)3]+добавляют 1 мл (7 ГБк) элюата 99mTcO4- и инкубируют в течение 30 минут при температуре 100°С. После инкубации 1 мл трикарбонила технеция добавляют к 334 мкл (1200 мкг) DARPin9_29 при концентрации раствора основного вещества 3,6 мг/л и инкубируют при температуре 40°С в течение 60 минут (согласно лабораторному регламенту получения РФП ЛР-02069303-0217 от 03.02.2017 г). В дальнейшем выполняют очистку полученного соединения от белковых примесей и несвязавшихся с технецием молекул DARPin9_29 с использованием очистительных колонок NAP-5 (GE Healthcare, Швеция). Радиохимические выход и чистоту определяют с помощью тонкослойной радиохроматографии (ТСРХ). Анализ хроматограмм проводят с использованием хроматографа Hitachi Chromaster HPLC systems с радиоактивным детектором. Полученный после очищения препарат в дозе 500 МБк разбавляют в 10 мл физиологического раствора и через стерилизующий фильтр медленно вводят пациенту. Через 4 часа после введения препарата пациенту выполняют однофотонную эмиссионную компьютерную томографию на двух детекторной гамма-камере и оценивают полученные результаты и при визуализации участков гиперфиксации РФП в ткани молочных желез диагностируют злокачественную опухоль.

Способ основан на анализе результатов экспериментальных клинических исследований. Для подтверждения эффективности выявления злокачественных опухолей молочных желез с гиперэкспрессией Her2/neu было проведено изучение особенностей накопления радиофармацевтического препарата на основе меченных технецием-99m рекомбинантных адресных молекул DARPin9_29. С этой целью была сформирована группа из 8 пациенток с верифицированным диагнозом рака молочной железы T4N0-3M0-1: исследуемую подгруппу составляли 4 пациентки с гиперэкспрессией Her2/neu, контрольную - 4 пациентки без экспрессии данного параметра. Всем пациенткам внутривенно вводили радиофармацевтический препарат на основе меченных технецием-99m рекомбинантных адресных молекул DARPin9_29 в дозе 500 МБк. Радиофармацевтический препарат готовили непосредственно перед введением согласно разработанному авторами лабораторному регламенту: для приготовления набор «CRS Isolink» (Center for Radiopharmaceutical Science, Paul Scherrer Institute, Villigen, Швейцария) для приготовления трикарбонила технеция [99mTc(СО)3(H2O)3]+добавляли 1 мл (7 ГБк) элюата 99mTcO4- и инкубировали в течение 30 минут при температуре 100°С. После инкубации 1 мл трикарбонила технеция добавляли к 334 мкл (1200 мкг) DARPin9_29 при концентрация раствора основного вещества 3,6 мг/л, и инкубировали при температуре 40°С в течение 60 минут (согласно лабораторному регламенту получения РФП ЛР-02069303-0217 от 03.02.2017 г). В дальнейшем выполняли очистку полученного соединения от белковых примесей и несвязавшихся с технецием молекул DARPin9_29 с использованием очистительных колонок NAP-5 (GE Healthcare, Швеция). Радиохимические выход и чистоту определяли с помощью тонкослойной радиохроматографии (ТСРХ). Анализ хроматограмм проводили с использованием хроматографа Hitachi Chromaster HPLC systems с радиоактивным детектором. Полученный после очищения препарат в дозе 500 МБк разбавляли в 10 мл физраствора и через стерилизующий фильтр медленно вводили пациенту.

Через 4 часа после введения препарата пациенту выполняли однофотонную эмиссионную компьютерную томографию на двух детекторной гамма-камере Е.САМ фирмы SIEMENS в стандартном режиме. Производили запись 64 проекций в матрицу 64×64 пикселя с применением низкоэнергетических коллиматоров с энергией 140 КэВ. Окно дифференциального дискриминатора было настроено на 20%, аппаратное увеличение не использовали. Полученные при исследовании изображения (сцинтиграммы) подвергали постпроцессинговой обработке с использованием фирменного пакета программ E.Soft (SIEMENS, Германия). Патологическими считались участки повышенной аккумуляции препарата в ткани молочной железы (Фиг. 1). Кроме того, при постпроцессинговой обработке производили расчет индекса «опухоль/фон», отражающий соотношение накопления препарата в опухолевой ткани и в здоровой ткани молочной железы. Результаты исследования продемонстрировали 100% чувствительность способа в диагностике операбельного рака молочной железы с гиперэкспрессией Her2/neu, то есть с применением указанного радиофармпрепарата удалось выявить опухоль у всех 10 пациенток, включенных в исследование. Произведенные расчеты показали, что средние значения индекса «опухоль/фон» составили 5,76±0,12.

Клинический пример 1.

Пациентка В., 58 лет: Ds.: Рак левой молочной железы IIA стадия (T2N0M0)

Гистологическое и иммуногистохимическое исследование: Инвазивная карцинома неспецифического типа 2 степени злокачественности. РЭ+, РП+, Her2/neu +

В плане обследования дополнительно выполнена однофотонная эмиссионная компьютерная томография с РФП на основе меченных технецием-99m рекомбинантных адресных молекул DARPin9_29 согласно предлагаемому способу.

На фиг. 1 - ОФЭКТ с РФП на основе меченных технецием-99m рекомбинантных адресных молекул DARPin9_29 через 4 часа после введения у пациентки с диагнозом рак левой молочной железы, IIA стадия (T2N0M0). Визуализируется метаболическая гиперфиксация препарата в проекции опухоли в ВНК левой молочной железы.

Клинический пример 2.

Пациентка У., 60 лет: Ds.: Рак правой молочной железы I стадия (T1N0M0) Гистологическое исследование: Инвазивная дольковая карцинома. РЭ+, РП+, Her2/neu - В плане обследования дополнительно выполнена однофотонная эмиссионная компьютерная томография с РФП на основе меченных технецием-99m рекомбинантных адресных молекул DARPin9_29 согласно предлагаемому способу. На Фиг. 2 - ОФЭКТ с РФП на основе меченных технецием-99m рекомбинантных адресных молекул DARPin9_29, через 4 часа после введения у пациентки с диагнозом рак правой молочной железы, I стадия (T1N0M0). Визуализируется отсутствие метаболической гиперфиксации препарата в проекции опухоли правой молочной железы.

Таким образом, предлагаемый способ диагностики операбельного рака молочной железы с гиперэкспрессией Her2/neu с применением радиофармацевтического препарата на основе меченных технецием-99m рекомбинантных адресных молекул DARPin9_29, позволяет отчетливо визуализировать злокачественные опухоли молочных желез на метаболическом уровне, а степень аккумуляции представленного радиофармпрепарата в опухоли дает возможность получать сцинтиграфические изображения надлежащего качества. Таким образом, применение нового способа с использованием радиофармацевтического препарата на основе меченных технецием-99m рекомбинантных адресных молекул DARPin9_29 позволит повысить эффективность, специфичность и доступность радионуклидной диагностики операбельного рака молочных желез с гиперэкспрессией Her2/neu.

Похожие патенты RU2702294C1

название год авторы номер документа
Способ радионуклидной диагностики вторичной отечно-инфильтративной формы рака молочной железы с гиперэкспрессией Her2/neu с использованием рекомбинантных адресных молекул DARPin9_29 2019
  • Брагина Ольга Дмитриевна
  • Чернов Владимир Иванович
  • Зельчан Роман Владимирович
  • Медведева Анна Александровна
  • Синилкин Иван Геннадьевич
  • Толмачев Владимир Максимилианович
  • Воробьева Анжелика Григорьевна
  • Деев Сергей Михайлович
  • Прошкина Галина Михайловна
  • Шульга Алексей Анатольевич
  • Ларькина Мария Сергеевна
  • Дудникова Екатерина Александровна
  • Гольдберг Виктор Евгеньевич
  • Чойнзонов Евгений Лхамацыренович
RU2700109C1
Способ оценки динамики неоадъювантной системной терапии рака молочной железы с гиперэкспрессией Her2/neu 2020
  • Брагина Ольга Дмитриевна
  • Чернов Владимир Иванович
  • Зельчан Роман Владимирович
  • Медведева Анна Александровна
  • Деев Сергей Михайлович
  • Толмачев Владимир Максимилианович
  • Воробьева Анжелика Григорьевна
  • Орлова Анна Марковна
RU2737996C1
Способ диагностики рака желудка с гиперэкспрессией Her2/neu 2020
  • Брагина Ольга Дмитриевна
  • Чернов Владимир Иванович
  • Зельчан Роман Владимирович
  • Медведева Анна Александровна
  • Деев Сергей Михайлович
  • Августинович Александра Владимировна
  • Афанасьев Сергей Геннадьевич
  • Толмачев Владимир Максимилианович
  • Воробьева Анжелика Григорьевна
  • Орлова Анна Марковна
RU2739107C1
Способ радионуклидной диагностики рака молочной железы с гиперэкспрессией Her2/neu 2019
  • Брагина Ольга Дмитриевна
  • Чернов Владимир Иванович
  • Зельчан Роман Владимирович
  • Медведева Анна Александровна
  • Синилкин Иван Геннадьевич
  • Толмачев Владимир Максимилианович
  • Воробьева Анжелика Григорьевна
  • Деев Сергей Михайлович
  • Тарабановская Наталья Анатольевна
  • Кокорина Юлия Леонидовна
  • Дудникова Екатерина Александровна
  • Шаталова Василиса Андреевна
  • Слонимская Елена Михайловна
  • Гольдберг Виктор Евгеньевич
RU2720801C1
СПОСОБ ОЦЕНКИ НЕОАДЪЮВАНТНОЙ ХИМИОТЕРАПИИ У БОЛЬНЫХ РАКОМ МОЛОЧНОЙ ЖЕЛЕЗЫ С ГИПЕРЭКСПРЕССИЕЙ HER2/NEU 2022
  • Брагина Ольга Дмитриевна
  • Чернов Владимир Иванович
  • Толмачев Владимир Максимилианович
  • Деев Сергей Михайлович
  • Шульга Алексей Анатольевич
  • Коновалова Елена Валерьевна
  • Зельчан Роман Владимирович
  • Медведева Анна Александровна
  • Гарбуков Евгений Юрьевич
  • Лукина Наталья Михайловна
  • Гольдберг Виктор Евгеньевич
RU2785387C1
СПОСОБ ПРОГНОЗИРОВАНИЯ СТАТУСА РЕЦЕПТОРА ЭПИДЕРМАЛЬНОГО ФАКТОРА РОСТА HER2/NEU В ОСНОВНОМ ОПУХОЛЕВОМ УЗЛЕ У БОЛЬНЫХ РАКОМ МОЛОЧНОЙ ЖЕЛЕЗЫ 2021
  • Брагина Ольга Дмитриевна
  • Чернов Владимир Иванович
  • Толмачев Владимир Максимилианович
  • Таширева Любовь Александровна
  • Гарбуков Евгений Юрьевич
  • Воробьева Анжелика Григорьевна
  • Орлова Анна Марковна
  • Зельчан Роман Владимирович
  • Медведева Анна Александровна
  • Лукина Наталья Александровна
  • Гольберг Виктор Евгеньевич
RU2762317C1
СПОСОБ ПРОГНОЗИРОВАНИЯ СТАТУСА РЕЦЕПТОРА ЭПИДЕРМАЛЬНОГО ФАКТОРА РОСТА HER2/NEU В ОСНОВНОМ ОПУХОЛЕВОМ УЗЛЕ У БОЛЬНЫХ РАКОМ МОЛОЧНОЙ ЖЕЛЕЗЫ 2022
  • Брагина Ольга Дмитриевна
  • Чернов Владимир Иванович
  • Толмачев Владимир Максимилианович
  • Деев Сергей Михайлович
  • Таширева Любовь Александровна
  • Зельчан Роман Владимирович
  • Медведева Анна Александровна
RU2779751C1
СПОСОБ ДИАГНОСТИКИ ОТДАЛЕННЫХ МЕТАСТАЗОВ У БОЛЬНЫХ РАКОМ МОЛОЧНОЙ ЖЕЛЕЗЫ С ГИПЕРЭКСПРЕССИЕЙ HER2/NEU 2022
  • Брагина Ольга Дмитриевна
  • Чернов Владимир Иванович
  • Толмачев Владимир Максимилианович
  • Деев Сергей Михайлович
  • Зельчан Роман Владимирович
  • Медведева Анна Александровна
  • Лукина Наталья Михайловна
  • Гольдберг Виктор Евгеньевич
RU2800864C1
СПОСОБ ДИАГНОСТИКИ РАКА МОЛОЧНОЙ ЖЕЛЕЗЫ С ГИПЕРЭКСПРЕССИЕЙ HER2/NEU 2022
  • Брагина Ольга Дмитриевна
  • Чернов Владимир Иванович
  • Толмачев Владимир Максимилианович
  • Деев Сергей Михайлович
  • Шульга Алексей Анатольевич
  • Коновалова Елена Валерьевна
  • Зельчан Роман Владимирович
  • Медведева Анна Александровна
  • Гарбуков Евгений Юрьевич
RU2800818C1
Способ прогнозирования статуса рецептора эпидермального фактора роста HER2/neu в метастатических аксиллярных лимфатических узлах у больных раком молочной железы 2023
  • Брагина Ольга Дмитриевна
  • Таширева Любовь Александровна
  • Чернов Владимир Иванович
  • Зельчан Роман Владимирович
  • Медведева Анна Александровна
  • Толмачев Владимир Максимилианович
  • Гарбуков Евгений Юрьевич
  • Вострикова Мария Александровна
  • Воронина Анна Сергеевна
RU2803857C1

Иллюстрации к изобретению RU 2 702 294 C1

Реферат патента 2019 года Способ радионуклидной диагностики операбельного рака молочной железы с гиперэкспрессией Her2/neu

Изобретение относится к медицине, а именно к онкологии и лучевой радионуклидной диагностике, и может быть использовано для диагностики операбельного рака молочной железы с гиперэкспрессией Her2/neu. Вводят инъекционную форму радиофармпрепарата на основе меченных технецием-99m рекомбинантных адресных молекул DARPin9_29, который изготавливают непосредственно перед введением. Для чего в асептических условиях 1 мл элюата 99mTcO4- 7 ГБк с помощью шприца добавляют в набор для приготовления трикарбонильного технеция и инкубируют при температуре 100°С в течение 30 минут. После инкубации 1000 мкл трикарбонила технеция добавляют к 334 мкл DARPin9_29 при концентрации раствора основного вещества 3,6 мг/л и инкубируют при температуре 40°С в течение 60 минут. Далее выполняют очистку полученного соединения от белковых примесей и несвязавшихся с технецием молекул DARPin9_29 с помощью очистительных колонок. Полученный после очищения препарат в дозе 500 МБк разбавляют в 10 мл физиологического раствора и через стерилизующий фильтр медленно вводят пациенту. Через 4 часа после введения препарата пациенту выполняют однофотонную эмиссионную компьютерную томографию на двухдетекторной гамма-камере. Оценивают полученные результаты и при визуализации участков гиперфиксации РФП в ткани молочных желез диагностируют злокачественную опухоль. Технический результат обеспечивает повышение специфичности, информативности и доступности диагностики операбельного рака молочной железы с гиперэкспрессией Her2/neu. 2 ил., 2 пр.

Формула изобретения RU 2 702 294 C1

Способ диагностики операбельного рака молочной железы с гиперэкспрессией Her2/neu, включающий внутривенное введение радиофармацевтического препарата (РФП) с последующим проведением однофотонной эмиссионной компьютерной томографии, отличающийся тем, что вводят инъекционную форму радиофармпрепарата на основе меченных технецием-99m рекомбинантных адресных молекул DARPin9_29, который изготавливают непосредственно перед введением, для чего в асептических условиях 1 мл элюата 99mTcO4- 7 ГБк с помощью шприца добавляют в набор для приготовления трикарбонильного технеция и инкубируют при температуре 100°С в течение 30 минут, после инкубации 1000 мкл трикарбонила технеция добавляют к 334 мкл DARPin9_29 при концентрации раствора основного вещества 3,6 мг/л и инкубируют при температуре 40°С в течение 60 минут, далее выполняют очистку полученного соединения от белковых примесей и несвязавшихся с технецием молекул DARPin9_29 с помощью очистительных колонок, полученный после очищения препарат в дозе 500 МБк разбавляют в 10 мл физиологического раствора и через стерилизующий фильтр медленно вводят пациенту, через 4 часа после введения препарата пациенту выполняют однофотонную эмиссионную компьютерную томографию на двухдетекторной гамма-камере, оценивают полученные результаты и при визуализации участков гиперфиксации РФП в ткани молочных желез диагностируют злокачественную опухоль.

Документы, цитированные в отчете о поиске Патент 2019 года RU2702294C1

Sorensen J
et al
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
// J Nucl Med
Способ защиты переносных электрических установок от опасностей, связанных с заземлением одной из фаз 1924
  • Подольский Л.П.
SU2014A1
Устройство двукратного усилителя с катодными лампами 1920
  • Шенфер К.И.
SU55A1
СПОСОБ ПОЛУЧЕНИЯ ВОДОРАСТВОРИМЫХ КАРБОНИЛЬНЫХ КОМПЛЕКСОВ КОРОТКОЖИВУЩИХ ТЕХНЕЦИЯ (1) И РЕНИЯ (1) 1997
  • Горшков Н.И.
  • Лумпов А.А.
  • Мирославов А.Е.
  • Суглобов Д.Н.
RU2125017C1
НОВЫЕ МЕТАЛЛОПОРФИРИНЫ И ИХ ПРИМЕНЕНИЕ В КАЧЕСТВЕ РАДИОСЕНСИБИЛИЗАТОРОВ В ЛУЧЕВОЙ ТЕРАПИИ 2002
  • Миура Мичико
  • Слаткин Даниэль Н.
RU2310447C2
AU 2008331354 B2, 20.11.2014
Брагина О.Д
и др
Прибор, замыкающий сигнальную цепь при повышении температуры 1918
  • Давыдов Р.И.
SU99A1
// Бюллетень сибирской медицины
Автомобиль-сани, движущиеся на полозьях посредством устанавливающихся по высоте колес с шинами 1924
  • Ф.А. Клейн
SU2017A1
Bhusari P
et al
Кулисный парораспределительный механизм 1920
  • Шакшин С.
SU177A1
// Int J Cancer
Автомобиль-сани, движущиеся на полозьях посредством устанавливающихся по высоте колес с шинами 1924
  • Ф.А. Клейн
SU2017A1
Li L
et al
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
// J Nucl Med
Автомобиль-сани, движущиеся на полозьях посредством устанавливающихся по высоте колес с шинами 1924
  • Ф.А. Клейн
SU2017A1

RU 2 702 294 C1

Авторы

Брагина Ольга Дмитриевна

Чернов Владимир Иванович

Зельчан Роман Владимирович

Медведева Анна Александровна

Синилкин Иван Геннадьевич

Толмачев Владимир Максимилианович

Воробьева Анжелика Григорьевна

Деев Сергей Михайлович

Прошкина Галина Михайловна

Шульга Алексей Анатольевич

Ларькина Мария Сергеевна

Тарабановская Наталья Анатольевна

Казанцева Полина Вадимовна

Дорошенко Артем Васильевич

Слонимская Елена Михайловна

Чойнзонов Евгений Лхамацыренович

Даты

2019-10-07Публикация

2019-01-18Подача