Способ определения температуры керна печи графитации Российский патент 2019 года по МПК G01K7/02 C01B32/20 C01B32/205 

Описание патента на изобретение RU2704558C1

Изобретение относится к производству графитированных углеродных конструкционных материалов и графитированных электродов для электрометаллургических печей. Измерение температуры керна печи графитации позволяет оптимизировать процесс, обеспечить своевременное отключение печи. Тем самым повышается качество графитированных материалов, увеличивается выход годных заготовок и снижается расход энергии на тонну графитированных материалов.

Известен способ измерения температуры керна печей графитации с использованием стержня-тепловода. (1. Патент РФ №2472119) Сущность его заключалась в следующем. Например, для стержня-тепловода ∅40 мм и длиной 800 мм, выполненного из графита ВПГ (высокоплотный графит) предварительно проводились замеры распределения температуры по длине стержня-тепловода при конкретной температуре горячего конца и нулевой температуре холодного конца t.х.к =0°С. Температура горячего конца варьировалась от 1400°С до 2800°С через каждые 200°С. Использовались табличные данные по коэффициенту теплопроводности, т.е. среднестатистического значения. Расчетные зависимости t=f(x) сводились в номограмму. Предусматривалось при использовании этого способа закладывать одну термопару в точку стержня-тепловода, где расчетная температура по номограмме не должна была превышать допустимую для данной термопары. Один конец стержня-тепловода должен находится в зоне измеряемой температуры, т.е. на границе керна, а второй конец должен выходить из стены печи и был обязан охладиться до 0°С.

Известен способ определения температуры керна печи графитации (2. Патент №2608572 прототип). По данному техническому решению измеряют температуру керна печи графитации в теплоизоляционном слое по нормали к поверхности керна в нескольких, но не менее чем в трех, точках одновременно, причем в той части слоя, температура которой не превышает 1500°С, на их основе определяют аналитическую зависимость распределения температуры на участке измерения температур, и полученную аналитическую зависимость распространяют на всю толщину теплоизоляционного слоя. В качестве аналитической зависимости принимают квадратный трехчлен вида t=a⋅x2+b⋅x+c, причем коэффициенты а, b, с в этой зависимости определяют по одновременно измеренным температурам t(x) в нескольких точках хi в теплоизоляционном слое по нормали к поверхности керна. При этом длина участка нормали к боковой поверхности керна, на котором проводятся измерения температуры, должна быть не менее 0,2 от толщины слоя теплоизоляции.

Недостатками известных технических решений является следующее:

- использование данного способа в промышленных условиях затруднительно;

- необходимо обеспечить теплоизоляцию стержня по всей боковой поверхности;

- расчет зависимостей T=f(x) для составления номограммы проводится для конкретного материала с известными теплофизическими свойствами, а также для строго определенных размеров самого стержня-тепловода, как по его длине, так и размеров его сечения. При этом необходимо обеспечить заложенные в расчетах величины теплового потока по стержню для каждой из температур «горячего» конца стержня-тепловода. То есть обеспечить постоянную температуру в определенной точке стержня при любых температурах горячего конца.

Все эти условия практически трудно выполнить в производственных условиях.

Целью предлагаемого решения является устранение вышеуказанных недостатков, упрощение и удешевление технологических процессов графитации и химической очистки, автоматизации управления данными процессами.

Предлагается новый способ определения температуры керна в печи графитации включающем измерение температуры одновременно в трех точках по длине стержня-тепловода из графита, один конец которого поддерживается при постоянной температуре 0°С, а второй находится в прямом контакте с керном печи графитации, расчет температуры керна с использованием аналитической зависимости формируемого температурного поля вдоль стержня-тепловода, имеющей вид квадратичного трехчлена Т=ах2+bх+с на основе измеренных данных, отличающийся тем, что что стержень-тепловод состоит из двух частей измерительной, обеспечивающей съем теплового потока находящейся в контакте с керном, по длине которой формируется определенная закономерность

температурного поля, определяемого соотношением: - const, и

охлаждаемой, обеспечивающей необходимые значения q - const в каждый данный момент.При этом измерительная часть стержня-тепловода выполнена из конструкционного графита, а охлаждающая часть из графита любой марки или металла, по форме и размерам сечения может быть отличной от измерительной, но при этом жестко соединенная с ней в стене печи графитации за теплоизоляционным слоем, окружающем керн. А расчет температуры керна печи графитации после значений температуры при λ(Т) - const измерительной части стержня-тепловода, производится по уравнению касательной:

В предлагаемом техническом решении измеряют температуру (Т) одновременно в трех точках T1(x1), Т22), Т33) по длине измерительной части из конструкционного графита стержня-тепловода, находящейся в теплоизоляционном слое печи графитации. Стержень-тепловод имитирует плоскую стенку, для которой в условиях стационарного теплового потока значение:

где λ(Т) - коэффициент теплопроводности при определенной температуре, в каждом любом сечении стержня-тепловода. Вдоль оси стержня-тепловода при протекании тепла формируется температурное поле, жестко связанное с зависимостью λ=f(x). Зависимость f=λ(T) для конструкционных графитов имеет гиперболический характер, что видно из таблиц значений коэффициента теплопроводности λ конструкционных графитов различных марок при различных температурах, (таблица 1. Зависимость коэффициента теплопроводности конструкционного графита марки ЗОПГ при различных температурах)

На основании этого считаем, что зависимость Т(х) имеет параболический характер. Определенное распределение температуры по длине стержня характеризуется аналитическим выражением квадратного трехчлена: Т=ах2+bх+с, где а, b, с - коэффициенты этого трехчлена. Задача заключается в нахождении зависимости Т(х), что просто сделать по измеренным в трех точках измерительной части стержня-тепловода температуры. Коэффициенты «а», «b», «с» легко найти из решения системы линейных уравнений:.

Т1=ах21+bх1

Т2=ах22+bх2

Т3=ах23+bх3

Однако коэффициент теплопроводности λ(Т) конструкционного графита любой марки начиная с конкретного значения Тконкр., практически не меняется. Это значит, что изменение температуры будет идти линейно по касательной к точке Xконкр, параболы Т(х), соответствующей Tконкр. Значения Xконкр находят по линейному уравнению Т=ах2+bх+с с конкретным значением Tконкр. А дальнейший расчет температуры керна печи графитации начиная с температуры выше Tконкр. проводится по уравнению касательной. Например, как видно из таблицы 1, коэффициент теплопроводности λТ) конструкционного графита марки 3ОПГ начиная с конкретного значения Tконкр., а именно с Т=2000°С практически не меняется. Это значит, что изменение температуры будет идти линейно по касательной к точке Xконкр, соответствующей Tконкр.=2000°С.

Уравнение касательной имеет вид:

Предлагаемый способ измерения температуры керна печи графитации значительно проще и удобнее других известных способов. В нашем случае величина теплового потока не имеет значения, главное, чтобы был поток тепла и обеспечивал формирование температурного поля по длине измерительной части стержня-тепловода. В предлагаемом способе определения температуры керна печи графитации измерение температуры проводят одновременно в трех, точках измерительной части стержня-тепловода только в теплоизоляционном слое, окружающем керн, причем только в той его части, где температура не превышает 1500°С, что позволяет измерять температуру с использованием термопарного метода, применяя в частности платино-родиевые термопары, устойчиво работающие при температуре 1500°С. Затем расчетным методом определяется температура горячего конца стержня-тепловода. Предлагаемый расчетный метод позволяет наиболее точно по сравнению с прототипом и аналогом определить необходимые значения температуры керна печи графитации.

Предлагается использовать стержень-тепловод, состоящий из двух частей - измерительной части, изолированной по боковой поверхности, находящейся в прямом контакте с керном печи, и второй части - охлаждаемой. Соединение измерительной и охлаждаемой части стерженя-тепловода располагается в стенке печи графитации за теплоизоляционном слоем, окружающем керн. Измерительная часть стерженя-тепловода выполняется из конструкционного графита любой марки. Выбор размеров сечения и длин обоих частей свободен. Степень охлаждения охлаждаемой части, по существу, обеспечивает определенный тепловой поток по стержню, который формируется в соответствии с q - const в каждом любом сечении. Охлаждающая часть стержня-тепловода может быть по форме и размерам сечения другой, чем измерительная и выполнена из графита любой марки или металла, для которого теплофизические свойства, в том числе и коэффициент теплопроводности λ(Т) неизвестен. Охлаждаемая часть стержня-тепловода нужна только для обеспечения прохождения необходимого теплового потока, причем произвольного по величине. Но в любом случае, эти две части должны быть жестко соединены друг с другом, чтобы обеспечить движение тепла до «холодильника», располагаемого на охлаждаемой части стержня-тепловода.

В предлагаемом способе не нужно проводить предварительных расчетов, не нужно знать величины тепловых потоков. Выбор начала системы координат не связан с температурой, т.е. не фиксируется температура в какой-то точке. Данные по температуре, получаемые после вычислений по заданным зависимостям, могут быть использованы как для анализа состояния процесса графитации и химической очистки, так и для автоматизации управления процессами. То есть определять автоматически момент начала пуска очистных реагентов, окончания процесса нагревания, регулирования темпа нагрева керна, определения момента отключения печи, отключения пуска очистных реактивов.

Кроме того, предлагаемый способ измерения температуры керна печей графитации является более экономичным и имеет минимальные значения ошибки измерения, чем аналогичные. Способ был опробован на лабораторно-производственном участке заявителя.

Источники информации

1. Патент РФ №2472119 МПК G01K 7/00 опуб. 10.01.2013 года, Патентообладатель АО «НИИграфит».

2. Патент РФ №2608572 МПК С01В 32/215 опуб. 23.01.2017 года,

Патентообладатель АО «НИИграфит» (прототип).

Похожие патенты RU2704558C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ КЕРНА ПЕЧИ ГРАФИТАЦИИ 2014
  • Перевезенцев Валентин Петрович
  • Данилов Егор Андреевич
  • Петров Алексей Викторович
RU2608572C2
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ КЕРНА ПЕЧИ ГРАФИТАЦИИ 2011
  • Перевезенцев Валентин Петрович
  • Иванова Ирина Александровна
RU2472119C1
СПОСОБ ПАКЕТИРОВКИ КРУПНОГАБАРИТНЫХ ЗАГОТОВОК МЕЛКОЗЕРНИСТОГО ГРАФИТА ИЗОСТАТИЧЕСКОГО ПРЕССОВАНИЯ ПРИ ГРАФИТАЦИИ 2014
  • Перевезенцев Валентин Петрович
  • Бейлина Наталия Юрьевна
  • Рубинчик Ольга Васильевна
  • Бакланова Анна Дмитриевна
RU2568493C1
СПОСОБ ПОЛУЧЕНИЯ ЕСТЕСТВЕННОГО ГРАФИТА ВЫСОКОЙ ЧИСТОТЫ 2016
  • Перевезенцев Валентин Петрович
  • Петров Алексей Викторович
RU2612713C1
ЭЛЕКТРИЧЕСКАЯ ПЕЧЬ ГРАФИТАЦИИ 2015
  • Перевезенцев Валентин Петрович
  • Петров Алексей Викторович
RU2610083C2
Электрическая печь сопротивления для графитации уложенных в керн в слое теплоизоляционной шихты углеродных заготовок 1989
  • Знамеровский Владимир Юрьевич
  • Лубошников Юрий Иванович
  • Иоффе Александр Нахимович
SU1642214A1
СПОСОБ ОБЖИГА КРУПНОГАБАРИТНЫХ ЗАГОТОВОК МЕЛКОЗЕРНИСТОГО ГРАФИТА ИЗОСТАТИЧЕСКОГО ПРЕССОВАНИЯ 2014
  • Перевезенцев Валентин Петрович
  • Бейлина Наталия Юрьевна
  • Рубинчик Ольга Васильевна
RU2559966C1
Способ тепловой изоляции керна электрической печи графитации 1984
  • Малей Любовь Степановна
  • Малей Михаил Дмитриевич
SU1235822A1
СПОСОБ И УСТРОЙСТВО ДЛЯ ГРАФИТАЦИИ УГЛЕРОДНЫХ ЗАГОТОВОК 1995
  • Перевезенцев В.П.
RU2140392C1
Способ пакетировки печей для графитации и одновременной очистки углеродных заготовок 1983
  • Авдеенко Михаил Алексеевич
  • Перевезенцев Валентин Петрович
  • Петров Евгений Леонидович
SU1155563A1

Реферат патента 2019 года Способ определения температуры керна печи графитации

Изобретение относится к производству графитированных углеродных конструкционных материалов и графитированных электродов для электрометаллургических печей. В способе определения температуры керна в печи графитации, включающем измерение температуры одновременно в трех точках по длине стержня-тепловода из графита, один конец которого поддерживается при постоянной температуре 0°С, а второй находится в прямом контакте с керном печи графитации, расчет температуры керна осуществляется с использованием аналитической зависимости формируемого температурного поля вдоль стержня-тепловода, имеющей вид квадратичного трехчлена Т=ах2+bх+с, на основе измеренных данных. Стержень-тепловод состоит из двух частей: измерительной, обеспечивающей съем теплового потока, находящейся в контакте с керном, по длине которой формируется определенная закономерность температурного поля, определяемого соотношением:

и охлаждаемой, обеспечивающей необходимые значения q - const в каждый данный момент. При этом измерительная часть стержня-тепловода выполнена из конструкционного графита, а охлаждающая часть из графита любой марки, по форме и размерам сечения может быть отличной от измерительной, но при этом жестко соединенная с ней в стене печи графитации за теплоизоляционным слоем, окружающим керн. Технический результат – упрощение и оптимизация процесса графитизации. 2 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 704 558 C1

1. Способ определения температуры керна в печи графитации, включающий измерение температуры одновременно в трех точках по длине стержня-тепловода из графита, один конец которого поддерживается при постоянной температуре 0°С, а второй находится в прямом контакте с керном печи графитации, расчет температуры керна осуществляется с использованием аналитической зависимости формируемого температурного поля вдоль стержня-тепловода, имеющей вид квадратичного трехчлена Т=ах2+bx+с, на основе измеренных данных, отличающийся тем, что что стержень-тепловод состоит из двух частей: измерительной, обеспечивающей съем теплового потока, находящейся в контакте с керном, по длине которой формируется определенная закономерность температурного поля, определяемого соотношением: - const, и охлаждаемой, обеспечивающей необходимые значения q - const в каждый данный момент.

2. Способ по п. 1, отличающийся тем, что измерительная часть стержня-тепловода выполнена из конструкционного графита, а охлаждающая часть из графита любой марки, по форме и размерам сечения может быть отличной от измерительной, но при этом жестко соединенная с ней в стене печи графитации за теплоизоляционным слоем, окружающим керн.

3. Способ по п. 1, 2, отличающийся тем, что расчет температуры керна печи графитации после значений температуры при λ(Т) - const измерительной части стержня-тепловода производится по уравнению касательной:

Документы, цитированные в отчете о поиске Патент 2019 года RU2704558C1

СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ КЕРНА ПЕЧИ ГРАФИТАЦИИ 2014
  • Перевезенцев Валентин Петрович
  • Данилов Егор Андреевич
  • Петров Алексей Викторович
RU2608572C2
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ КЕРНА ПЕЧИ ГРАФИТАЦИИ 2011
  • Перевезенцев Валентин Петрович
  • Иванова Ирина Александровна
RU2472119C1
ПАНОВ Е.Н., КУТУЗОВ С.В., ЛЕЛЕКА С.В., ШИЛОВИЧ И.Л., БОЖЕНКО М.Ф
"РАСЧЕТНО-ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ТЕМПЕРАТУРНЫХ ПОЛЕЙ КЕРНА В П-ОБРАЗНЫХ ПЕЧАХ ГРАФИТИЗАЦИИ ПОСТОЯННОГО ТОКА", ПРОМЫШЛЕННАЯ ТЕПЛОТЕХНИКА, 2007, Т.29, номер 2, с.22-28
Способ приготовления смеси для цементации изделий без применения центрированных коробок 1928
  • Крастин А.С.
SU23422A1
Способ контроля теплового режима процесса графитации 1982
  • Глушко Игорь Николаевич
SU1089048A1
DD 228647 A, 16.10.1985.

RU 2 704 558 C1

Авторы

Перевезенцев Валентин Петрович

Петров Алексей Викторович

Даты

2019-10-29Публикация

2018-12-20Подача