Изобретение относится к теплозащитным покрытиям, предназначенным для защиты узлов и агрегатов, работающих в условиях воздействия аэродинамических и газодинамических тепловых потоков.
Известна композиция для огнепреградительного покрытия (RU 2458949 С2, кл. C08L 61/10, публ. 20.08.2012), включающая масс.ч.:
Недостатком данной композиции является сложность изготовления полуфабриката и отсутствие возможности нанесения покрытия на поверхности сложной геометрии.
Известна композиция для изготовления теплозащитного покрытия (RU 2037504 С1, кл. C08L 61/10, C08L 9/02, С08К 13/02, публ. 19.06.1995), включающая, масс.ч.:
Недостатками данного технического решения являются низкая окислительная стойкость композиции и полуфабриката на ее основе, нестабильность свойств и низкое качество.
Наиболее близкой к заявленной композиции является композиция для изготовления теплозащитного покрытия (RU 2640523 С2, кл. C08L 61/14, C08L 9/02, C09D 161/14, С08К 13/02, публ. 09.01.2018), включающая, масс.ч.:
Недостатком данного технического решения является недостаточно высокая термическая стойкость композиции, низкий уровень физико-механических свойств и уровень межслоевой прочности при послойном нанесении покрытия, что не позволяет нанести композицию на защищаемую поверхность в толщинах более 10 мм. Кроме того, при нанесении известной композиции на защищаемую поверхность из металла, в том числе из титана, стали, сплавов на их основе, и неметаллов требуется нанесение низкотемпературного подслоя ВЛ-02.
Изготовление современных узлов и агрегатов, работающих в условиях воздействия аэродинамических и газодинамических тепловых потоков, выдвигает требования по обеспечению адгезии покрытия к металлам (титану, стали и сплавам на их основе) и неметаллам при воздействии на конструкцию аэродинамического нагрева.
Технический результат заключается в повышении физико-механических свойств теплозащитного покрытия, увеличении прочности межслоевого сцепления при нанесении, возможности нанесения покрытия в увеличенных толщинах для изделий, увеличении адгезии покрытия к металлам (титану, стали и сплавам на их основе) и неметаллам, а также в увеличении термоокислительной устойчивости в условиях воздействия аэродинамического нагрева и кислорода воздуха.
Указанный технический результат достигается тем, что композиция для изготовления теплозащитного покрытия включает фенолоформальдегидную смолу новолачного типа, фурфурол, уротропин, бутадиен-нитрильный каучук СКН-40-КНТ в виде 20% раствора в ацетоне, ацетон, бутилацетат, тальк, слюду, при этом в композицию дополнительно вводят низкомолекулярный полиуретановый каучук и термостабилизаторы - Агидол-5 и трифенилфос-фит при следующем соотношении компонентов, в масс.ч:
Дополнительное введение низкомолекулярного полиуретанового каучука, представляющего собой олигоуретан с концевыми функциональными группами, приводит к образованию блок сополимера с гибкими уретановыми фрагментами, что обеспечивает существенное уменьшение хрупкости, увеличение межслоевой прочности и увеличение адгезии композиции к металлическим и неметаллическим материалам.
Для увеличения стойкости покрытия к одновременному воздействию высоких температур и кислорода воздуха (устойчивости к термоокислительной деструкции) в состав композиции введены термостабилизаторы - Агидол-5 и трифенилфосфит, образующие синергическую смесь, существенно повышающую устойчивость материала при эксплуатации при воздействии аэродинамического потока.
Кроме того, согласно требованиям к теплозащитной композиции важна возможность ее нанесения на защищаемую поверхность в увеличенных в сравнении с прототипом толщинах, которые определяются условиями эксплуатации изделия).
Теплозащитную композицию получают многостадийным способом, заключающимся в осуществлении следующих операций:
1) Изготовление эластифицирующего компонента;
2) Изготовление термореактивного связующего;
3) Смешение эластифицирующего компонента и термореактивного связующего с термостабилизаторами и минеральными наполнителями.
Изготовление эластифицирующего компонента (20%-ного раствора бутадиеннитрильного каучука СКН-40-КНТ в ацетоне), осуществляют в смесителе, снабженном высокоэффективной лопастной мешалкой, в который заливают расчетное количество ацетона и загружают порциями каучук СКН-40-КНТ. Непрерывное перемешивание продолжают до получения однородного раствора, не содержащего нерастворенных включений и механических примесей.
Изготовление термореактивного связующего, заключающееся в растворении новолачной фенолоформальдегидной смолы и уротропина в фурфуроле, осуществляют в обогреваемом реакторе, в который загружают расчетное количество фурфурола, включают обогрев и порциями вводят новолачную смолу (например, СФ-010). Непрерывное перемешивание при нагревании продолжают до полного растворения смолы. При этом происходит взаимодействие фурфурола с новолачной смолой и частичное превращение ее в фенолоформальдегидную смолу резольного типа, способную отвер-ждаться при повышенных температурах без использования катализаторов. Для обеспечения более полного и быстрого отверждения полученного связующего в его состав вводят катализатор отверждения - уротропин, для чего содержимое реактора охлаждают до комнатной температуры и при непрерывном перемешивании порциями вводят расчетное количество уротропина. Перемешивание осуществляют до стабилизации вязкости термореактивного связующего.
Изготовление теплозащитной композиции осуществляют путем механического смешения термореактивного связующего с эластифицирующим компонентом, низкомолекулярным полиуретановым каучуком, растворителями, термостабилизаторами и минеральными наполнителями. В смеситель периодического действия загружают расчетные количества термореактивного связующего, ацетона, бутилацетата, талька и слюды и перемешивают в течение заданного времени, затем, не прекращая перемешивания, вводят термостабилизаторы Агидол-5 и трифенилфосфит, эластифицирующий компонент в виде раствора каучука СКН-40-КНТ в ацетоне и низкомолекулярный полиуретановый каучук (например, ПЭФ-3А) и продолжают перемешивание до получения однородной вязкой массы, не содержащей комков и механических включений, способной к переработке методом пневмораспыления.
Изобретение иллюстрируется следующими примерами:
Составы композиции в масс.ч. приведены в таблице №1.
Согласно требованиям к теплозащитным покрытиям важно, чтобы покрытие сохранилось на защищаемой поверхности при действующих на изделие уровней газодинамического и аэродинамического потоков. Испытания на эффективность работы тепловой защиты проводятся поэтапно, моделируя различные ступени теплового, аэродинамического и газодинамического воздействия на конструкцию, содержащую покрытие из заявленной композиции.
Определение термической стойкости теплозащитного покрытия в соответствии с требованиями технических условий проводилось на металлических пластинах с нанесенной композицией по данному изобретению. Метод нанесения на защищаемую поверхность - послойное напыление. Этот метод позволяет нанести композицию на поверхности сложной геометрии и защитить изделие от воздействующих факторов при эксплуатации в составе изделий. Пластина с покрытием помещалась в муфель, нагретый до температуры 800°С, и выдерживалась в течение 120 с. Качество покрытия определялось по состоянию поверхности покрытия после охлаждения.
Данные по результатам оценки качества при воздействии различных факторов нагружения заявленного состава тепловой защиты в сравнении с прототипом, в том числе, в условиях натурных испытаний приведены в таблице 2.
Результаты испытаний всех приведенных в табл.1 составов показали высокую технологичность, а также высокие эксплуатационные свойства заявленной теплозащитной композиции.
Из анализа видно, что результаты проведенных стендовых испытаний и испытаний в составе натурного изделия с использованием в качестве тепловой защиты заявленной композиции позволяют обеспечить стойкость к окислению, стойкость к высокотемпературным аэродинамическим, газодинамическим воздействиям, обеспечить возможность нанесения в толщинах более 10 мм в условиях эксплуатации и получить качественное теплозащитное покрытие при высокой технологичности.
название | год | авторы | номер документа |
---|---|---|---|
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ | 2016 |
|
RU2640523C2 |
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ | 2016 |
|
RU2628784C1 |
СВЯЗУЮЩЕЕ ДЛЯ ИЗГОТОВЛЕНИЯ ТЕКСТОЛИТОВ И ПРЕСС-КОМПОЗИЦИЙ | 2020 |
|
RU2740665C1 |
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ОГНЕПРЕГРАДИТЕЛЬНОГО МАТЕРИАЛА | 1999 |
|
RU2157389C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ БРОНЕЧЕХЛА ДЛЯ ВКЛАДНОГО ЗАРЯДА ИЗ СМЕСЕВОГО ТВЕРДОГО ТОПЛИВА К РАКЕТНОМУ ДВИГАТЕЛЮ И ТЕПЛОЗАЩИТНЫЙ МАТЕРИАЛ | 2014 |
|
RU2557629C1 |
КОМПОЗИЦИЯ ДЛЯ ОГНЕПРЕГРАДИТЕЛЬНОГО ПОКРЫТИЯ И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ | 2010 |
|
RU2458949C2 |
КЛЕЕВАЯ КОМПОЗИЦИЯ ХОЛОДНОГО ОТВЕРЖДЕНИЯ | 2009 |
|
RU2448140C2 |
ПОЛИМЕРНАЯ КОМПОЗИЦИЯ ДЛЯ АНТИКОРРОЗИОННОЙ ЗАЩИТЫ | 2008 |
|
RU2394056C2 |
ИЗНОСОСТОЙКИЙ ЗАЩИТНЫЙ ПОЛИМЕРНЫЙ СОСТАВ | 2007 |
|
RU2374282C2 |
ИЗНОСОСТОЙКИЙ ЗАЩИТНЫЙ ПОЛИМЕРНЫЙ СОСТАВ | 2004 |
|
RU2261879C1 |
Изобретение относится к теплозащитным покрытиям, предназначенным для защиты узлов и агрегатов, работающих в условиях воздействия аэродинамических и газодинамических тепловых потоков. Композиция для изготовления теплозащитного покрытия включает (мас.ч.) фенолоформальдегидную смолу новолачного типа 10,0-12,0; фурфурол 9,0-12,0; уротропин 1,2-1,6; бутадиен-нитрильный каучук в виде 20% раствора в ацетоне 26,0-28,0; ацетон 4,0-6,0; бутилацетат 4,0-6,0; тальк 19,0-21,0; слюду 11,0-13,0; низкомолекулярный полиуретановый каучук 5,0-7,0; термостабилизаторы - Агидол-5 2,0-4,0; трифенилфосфит 2,0-4,0. Изобретение позволяет повысить физико-механические свойства теплозащитного покрытия, увеличить прочность межслоевого сцепления при нанесении, возможность нанесения покрытия в увеличенных толщинах для изделий, увеличить адгезию покрытия к металлам, а также увеличить термоокислительную устойчивость в условиях воздействия высоких температур и кислорода воздуха. 2 табл.
Композиция для изготовления теплозащитного покрытия, включающая фенолоформальдегидную смолу новолачного типа, уротропин, фурфурол, бутадиен-нитрильный каучук СКН-40-КНТ в виде 20% раствора в ацетоне, ацетон, бутилацетат, тальк, слюду, отличающаяся тем, что она дополнительно содержит низкомолекулярный полиуретановый каучук и термостабилизаторы - Агидол-5 и трифенилфосфит при следующем соотношении компонентов, мас.ч.:
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ | 2016 |
|
RU2640523C2 |
WO 2015175551 A1, 19.11.2015 | |||
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ | 2016 |
|
RU2628784C1 |
СВЯЗУЮЩЕЕ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И КОМПОЗИЦИОННЫЙ МАТЕРИАЛ, ИЗГОТОВЛЕННЫЙ НА ОСНОВЕ СВЯЗУЮЩЕГО | 2013 |
|
RU2547744C1 |
ТЕРМОПЛАСТИЧНАЯ РЕЗИНОВАЯ КОМПОЗИЦИЯ | 1995 |
|
RU2111985C1 |
Авторы
Даты
2019-11-01—Публикация
2019-04-19—Подача