Состав мембраны химического сенсора для определения концентрации ионов ртути в водных растворах Российский патент 2020 года по МПК G01N27/36 C03C3/32 

Описание патента на изобретение RU2712190C2

Изобретение относится к физико-химическим методам анализа, в частности, к способу определения концентрации ионов ртути в растворах.

Известны химические сенсоры (ионоселективные электроды) с прессованными поликристаллическими мембранами на основе смеси 45-65 мол. % Hg2Cl2 - 35-55 мол. % Ag2S, полученной методом смешения солей с последующей гомогенизацией и горячим прессованием [1].

В настоящее время известен состав прессованных мембран ионоселективных электродов для определения ионов ртути, где в качестве чувствительного вещества используют Hg2O, полученную термическим разложением раствора нитрата ртути на титановой подложке [2]. К недостатку данных электродов является то, что они работают только в узкой области рН от 3 до 8.

Наиболее близким к предлагаемому техническому решению является мембранный материал, где в качестве чувствительного (электродноактивного) вещества используют суперионный проводник (Ag8HgS2I6) в смеси с Ag2S в соотношении 40 - 60 вес. % [3], который принят в качестве прототипа.

Недостатком известного мембранного материала является низкий предел обнаружения, который не превышает 10-4 - 10-5 М, что определяется, в частности, относительно низкой стабильностью суперионного проводника в водных растворах и частичным его разложением даже в слабокислых средах (рН≥2,5). К недостаткам вышеназванных составов мембран для ртутьселективных сенсоров можно отнести также относительно невысокий срок службы около 6 месяцев.

Значительно лучшими характеристиками обладают сенсорные мембранные материалы на основе халькогенидных стекол.

Технический результат заявленного способа состоит в существенном увеличении ресурса работы и повышении стабильности работы химического сенсора на ионы ртути в кислых средах.

Указанный технический результат достигается тем, что в качестве соединения с высокой ионно-электронной проводимостью выбран селенид серебра, в качестве стеклообразователя селенид мышьяка, а в качестве электродноактивного вещества иодид ртути, что обеспечивает высокую устойчивость мембранного материала и, как следствие, лучшие характеристики чувствительности и точности определения ионов ртути, при этом соотношение компонентов халькогенидного стекла, содержащего: иодид ртути (15 - 35 мол. %) - потенциалопределяющее вещество; селенид серебра (15 - 35 мол. %) -соединение с высокой ионной проводимостью; селенид мышьяка (40 - 60 мол. %) - стеклообразователь.

Заявленное изобретение было апробировано в Санкт-Петербургском государственном университете в режиме реального времени. При этом были использованы: иономер (Mettler Toledo S40) с входным сопротивлением 1011 Ом для измерения потенциалов ячейки. В качестве растворов для построения градуировочных графиков применяли: а) 10-1-10-6 моль⋅л-1 Hg(NO3)2, б) 10-1-10-6 моль⋅л-1 Hg(NO3)2 с постоянной ионной силой равной 0.1 по HN03. Определение коэффициента селективности для Hg-селективных сенсоров проводились методом биионных потенциалов в смешанных растворах. Для этого использовались раствор 0,1 М Hg(NO3)2 и 0,1 М растворы, содержащие мешающие ионы тяжелых металлов: Cu(NO3)2, Zn(NO3)2, Cd(NO3)2, Pb(NO3)2.

Результаты апробаций представлены в виде конкретных примеров реализации в реальных лабораторных условиях. После проведения калибровок, сенсоры на ионы ртути (Фиг. 1) были использованы для измерения в ряде лабораторных сред, при этом погрешности измерений составляли 3-5%, для растворов 10-5-10-6 М, погрешность не превышала 10-15%. Пример 1.

Стекла системы HgI2-Ag2Se-As2Se3 были синтезированы из исходных веществ Ag2Se и HgI2 квалификации (х.ч.) и синтезированного нами As2Se3.

Селенид мышьяка As2Se3 был синтезирован по следующей методике. Ампулу с навесками мышьяка и селена общей массой 25-40 г. нагревали до 400-450°С. При этой температуре расплав выдерживали не менее суток для прохождения гетерогенной реакции взаимодействия мышьяка с селеном. Затем температуру повышали до 900°С, при этой температуре выдерживали в течение 12 часов. Закалку проводили от 850°С на воздухе.

Все стекла трех составов (навески - 3гр., в кварцевых ампулах, при остаточном давлении ≈ 0,1 Па.) получали в следующем режиме: температуру печи с образцами медленно поднимали до 450°С, ампулы выдерживали 8 ч., после чего температуру повышали до 950°С, при которой расплав выдерживали около суток и периодически перемешивали. Далее температуру снижали до 650°С и расплав выдерживали в ампулах в течении 4-5 ч. Закалку проводили от 650°С со скоростью 60-100°С/сек. Контроль стеклообразного состояния осуществляли с помощью рентгенофазового анализа.

Таким образом, были получены ртутьсодержащие халькогенидные стекла трех составов со следующим содержанием HgI2, Ag2Se и As2Se3 в мол. %, соответственно: 1) 15-35-50; 2) 25-25-50; 3) 35-15-50.

Исследование температурных зависимостей электропроводности образцов выполнено методом импедансной спектроскопии на установке «Novocontrol Concept 40». Диапазон частот 20 МГц-10 Гц, для температурного интервала 0-120°С.

Пример 2. Заявленное изобретение поясняется Фиг. 1, на которой представлена зависимость электродной функции ртутьселективного сенсора с мембраной на основе халькогенидного стекла в системе HgI2-Ag2Se-As2Se3.

Пример 3. Заявленное изобретение поясняется Таблицей 1, на которой представлены результаты определения коэффициентов селективности ртутьселективных сенсоров с халькогенидными стеклянными мембранами на основе HgI2-Ag2Se-As2Se3.

Пример 4. Заявленное изобретение поясняется Фиг. 2, на которой представлена зависимость потенциала Е (мВ), ртутьселективного сенсора, состава мембраны 25 мол. % HgI2-25 мол % Ag2Se-50 мол % As2Se3, от рН исследуемого раствора при постоянных концентрациях потенциалопределяющего иона(моль⋅л-1): 10-1 Hg(NO3)2; 10-2 Hg(NO3)2; 10-3 Hg(NO3)2.

Технико-экономическая значимость заявленного изобретения состоит в возможности измерения концентрации ионов ртути в пробе раствора в течение 5-10 мин.; возможно определение ионов ртути в растворах в полевых условиях, т.к. портативный комплект для измерений состоит из сенсора на ртуть, электрода сравнения, калибровочных растворов и иономера - общий вес комплекта составляет 3 кг. Надо отметить, что разработанного сенсора нет в комплектах ни зарубежных, ни отечественных производителей в настоящее время.

Источники информации, принятые во внимание при экспертизе:

1. Власов Ю.Г., Колодников В.В., Ермоленко Ю.Е., Бычков Е.А., Осипова С.А. Состав мембраны ионоселективного электрода для определения активности ионов ртути /I/ и /II/. Авторское свидетельство СССР №1081520 от 13 декабря 1982 г.

2. Колесников В.А., Кокарев Г.А., Жилова М.Г., Громова Е.В. Способ изготовления мембраны ионоселективного электрода для определения концентрации ионов ртути /II//. Авторское свидетельство СССР №1436050 от 07 ноября 1988 г.

3. Власов Ю.Г., Ермоленко Ю.Е., Колодников В.В., Меркулов Е.В. и др. Состав мембраны ионоселективного электрода для определения активности ионов ртути /2/. Авторское свидетельство СССР №1274455 от 28 декабря 1984 г (прототип)

Похожие патенты RU2712190C2

название год авторы номер документа
Состав мембраны химического сенсора для определения концентрации ионов таллия в водных растворах 2016
  • Ермоленко Юрий Евгеньевич
  • Власов Юрий Георгиевич
  • Колодников Василий Викторович
  • Калягин Дмитрий Сергеевич
RU2629196C1
СОСТАВ МЕМБРАНЫ ИОНОСЕЛЕКТИВНОГО ЭЛЕКТРОДА ДЛЯ ОПРЕДЕЛЕНИЯ ИОНОВ СВИНЦА 2006
  • Кирсанов Дмитрий Олегович
  • Легин Андрей Владимирович
  • Бабаин Василий Александрович
  • Польшин Евгений Николаевич
  • Рудницкая Алиса Михайловна
  • Легин Кирилл Андреевич
  • Селезнев Борис Леонидович
RU2315988C1
РЕЗИСТИВНЫЙ МАТЕРИАЛ 2013
  • Мельникова Нина Владимировна
  • Хейфец Ольга Леонидовна
  • Бабушкин Алексей Николаевич
  • Филиппов Алексей Леонидович
  • Курочка Кирилл Викторович
RU2533551C1
Состав мембраны стеклянного электрода для определения активности ионов серебра (его варианты) 1981
  • Власов Юрий Георгиевич
  • Бычков Евгений Алексеевич
  • Казакова Елена Анатольевна
  • Рыкова Татьяна Сергеевна
  • Борисова Зоя Ульяновна
  • Ермоленко Юрий Евгеньевич
  • Колодников Василий Викторович
SU996926A1
Состав халькогенидной стеклянной мембраны электрода для определения ионов кадмия 1989
  • Власов Юрий Георгиевич
  • Бычков Евгений Алексеевич
  • Легин Андрей Владимирович
SU1711055A1
Состав мембраны ионоселективного электрода для определения ионов ртути (II) 1990
  • Москвин Леонид Николаевич
  • Голиков Дмитрий Витальевич
  • Григорьева Мария Федоровна
  • Смирнова Галина Ивановна
SU1718082A1
Состав халькогенидной стеклянной мембраны электрода для определения ионов свинца 1988
  • Власов Юрий Георгиевич
  • Бычков Евгений Алексеевич
  • Легин Андрей Владимирович
SU1583820A1
ЭЛЕКТРОХИМИЧЕСКИЙ ДЕТЕКТОР ДЛЯ ИССЛЕДОВАНИЯ ЖИДКОСТИ СЛОЖНОГО СОЛЕВОГО И ХИМИЧЕСКОГО СОСТАВА 2008
  • Стоянов Владимир Владимирович
  • Степанец Олег Викторович
  • Плишкин Александр Николаевич
  • Соловьева Галина Юрьевна
  • Халатов Арсен Николаевич
  • Подберезский Владимир Анатольевич
  • Кирсанов Дмитрий Олегович
  • Легин Андрей Владимирович
  • Легин Евгений Андреевич
RU2370759C1
Состав мембраны халькогенидного электрода для определения ионов кадмия 1983
  • Власов Юрий Георгиевич
  • Бычков Евгений Алексеевич
  • Сафаров Алексей Дмитриевич
  • Антонов Павел Петрович
  • Милошова Мариана Стаменкова
SU1125534A1
СОСТАВ ХАЛЬКОГЕНИДНОЙ СТЕКЛЯННОЙ МЕМБРАНЫ ЭЛЕКТРОДА ДЛЯ ОПРЕДЕЛЕНИЯ ИОНОВ СВИНЦА 1989
  • Власов Ю.Г.
  • Бычков Е.А.
  • Легин А.В.
RU2034289C1

Иллюстрации к изобретению RU 2 712 190 C2

Реферат патента 2020 года Состав мембраны химического сенсора для определения концентрации ионов ртути в водных растворах

Изобретение относится к физико-химическим методам анализа, в частности к потенциометрическому способу определения концентрации ионов ртути в растворах. Раскрыт состав мембраны химического сенсора для определения концентрации ионов ртути (II) в водных растворах, включающий халькогенидное стекло, состоящее из: 1) потенциалопределяющего вещества; 2) соединения с высокой ионно-электронной проводимостью; 3) стеклообразователя, где в качестве потенциалопределяющего вещества использован иодид ртути HgI2 в количестве 15-35 мол. %, в качестве соединения с высокой ионной проводимостью использован селенид серебра Ag2Se в количестве 15-35 мол. %, а в качестве стеклообразователя - селенид мышьяка As2Se3 в количестве 40-60 мол. %. Изобретение обеспечивает увеличение ресурса и улучшение стабильности работы химического сенсора на ионы ртути в кислых средах. 2 ил., 1 табл., 4 пр.

Формула изобретения RU 2 712 190 C2

Состав мембраны химического сенсора для определения концентрации ионов ртути (II) в водных растворах, включающий халькогенидное стекло, состоящее из: 1) потенциалопределяющего вещества; 2) соединения с высокой ионно-электронной проводимостью; 3) стеклообразователя, отличающийся тем, что в качестве потенциалопределяющего вещества использован иодид ртути HgI2 в количестве 15-35 мол. %, в качестве соединения с высокой ионной проводимостью использован селенид серебра Ag2Se в количестве 15-35 мол. %, а в качестве стеклообразователя - селенид мышьяка As2Se3 в количестве 40-60 мол. %.

Документы, цитированные в отчете о поиске Патент 2020 года RU2712190C2

BOIDIN R
et al
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Иноселективный электрод 1977
  • Власов Юрий Георгиевич
  • Ермоленко Юрий Евгеньевич
  • Кочерегин Сергей Борисович
  • Колодников Василий Викторович
SU630576A1
US 4549953, 29.10.1985
BABANLY M.B
et al
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1

RU 2 712 190 C2

Авторы

Ермоленко Юрий Евгеньевич

Калягин Дмитрий Сергеевич

Колодников Василий Викторович

Еремин Вячеслав Валентинович

Кротов Сергей Алексеевич

Пронин Евгений Викторович

Даты

2020-01-24Публикация

2018-01-26Подача