Способ повышения интенсивности люминесценции оксидных диэлектриков Российский патент 2020 года по МПК C09K11/78 C04B35/48 C30B33/02 B82Y40/00 

Описание патента на изобретение RU2714811C2

Изобретение относится к люминесцентным материалам и их применению в электронике и может быть использовано в фотонике, лазерной технике, оптоэлектронике. Оно может применяться при разработке лазерных фотоприемников, оптически активных слоев фотолюминесцентных, катодолюминесцентных и электролюминесцентных устройств, амперометрических биосенсоров, хемилюминесцентных сенсоров, золь-гелевых стекол, легированных функциональными наночастицами (полупроводниковыми или металлическими).

Известны способы повышения интенсивности люминесценции:

- патент RU 2628781 (Федеральное государственное бюджетное учреждение науки Байкальский институт природопользования Сибирского отделения Российской Академии наук «Люминесцентное вещество»);

- патент RU 2108598 (Кемеровский государственный университет «Рабочее вещество для термолюминесцентного дозиметра ионизирующих излучений»).

Общим недостатком данных методов является то, что в них для повышения интенсивности люминесценции используются легирующие примеси. Известно, что в формировании полосы люминесценции ZrO2 при 480 нм принимают участие кислородные вакансии. Поэтому введение примесей в матрицу диоксида циркония, как в указанных аналогах, не приведет к увеличению интенсивности люминесценции полосы при 480 нм.

Также известно люминесцентное вещество [патент RU 2024570 (Бурятский институт естественных наук СО РАН «Люминесцентное вещество»)], в котором шихту из оксидов K2O; ВаО; Y2O3; Nd2O3; MoO3 гомогенизируют и отжигают в две стадии: при
550 – 570°С 35 – 40 ч и 720 – 750°С 70 – 80 ч.

Недостатком данного способа является низкая температура термообработки, при которой не образуются кислородные вакансии за счет термохимического окрашивания. В результате такой обработки интенсивность свечения ZrO2 не изменится.

Из литературы известен способ создания профилированного монокристалла сапфира с примесью углерода, выращенный методом Степанова [М.С. Аксельрод, В.С. Кортов, И.И. Мильман, Е.А. Горелова, А.А. Борисов, Л.М. Затуловский, Д.Я. Кравецкий, И.Е. Березина, Н.К. Лебедев «Профилированные легированные углеродом монокристаллы окиси алюминия для термолюминесцентных дозиметрических детекторов»].

Данный способ основан на выращивании кристаллов в присутствии графита. В результате такой обработки наблюдается образование карбида циркония на поверхности компактов, что вызывает почернение компактов и уменьшение интенсивности люминесценции. Указанный способ не предусматривает какой-либо повторной обработки монокристаллов с целью устранения данного почернения.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому следует считать способ повышения интенсивности люминесценции диоксида циркония на основе термообработки микрокристаллических компактов, полученных путем холодного одноосного прессования, на воздухе в муфельной печи при 400°С в течение 1 часа [S.V. Nikiforov, V.S.Kortov, M.G.Kazantseva, K.A.Petrovykh. Luminescent properties of monoclinic zirconium oxide. Journal of Luminescence 166 (2015) 111–116]. При реализации указанного способа интенсивность люминесценции возрастает только за счет увеличения размера зерна. Недостатком данного способа является отсутствие условий для формирования кислородных вакансий, что не позволяет достичь существенного повышения интенсивности люминесценции.

Проблемой, которую решает изобретение, является низкая интенсивность люминесценции диоксида циркония в полосе 480 нм.

Сущность заявляемого способа повышения интенсивности люминесценции оксидных диэлектриков заключается в том, что нанопорошок ZrO2 путем холодного одноосного прессования при давлении 900–1100 кг⋅с/см2 формируют в компакты с последующей их термообработкой, отличающейся тем, что термообработку осуществляют в вакууме при температуре более 1100°С в присутствии графита в виде графитовой стружки, полностью окружающей компакты, с последующей повторной обработкой компактов на воздухе при температуре более 700°С в течение 1 часа.

Для реализации заявляемого способа нанопорошок диоксида циркония формируется методом холодного одноосного прессования при давлении 900-1100 кг⋅с/см2 в компакты. Выбор таких значений обусловлен тем, что при больших давлениях происходит расслаивание компактов, а при меньших они становятся хрупкими. В обоих случаях ухудшаются их прочностные характеристики, что может привести к неконтролируемому изменению интерсивности люминесценции. Далее компакты подвергаются высокотемпературной обработке в присутствии углерода в виде графитовой стружки массой 1 г, полностью окружающей компакты в алюминиевых тиглях (фиг. 1) в электровакуумной печи при температуре свыше 1100°C. Полное окружение компакта графитовой стружкой позволяет достичь лучшей воспроизводимости интенсивности люминесценции компактов, полученных как в одном, так и в разных технологических циклах термообработки по сравнению с отжигом в графитовых тиглях за счет более равномерного распределения кислородных вакансий по объему компакта. Среднее квадратичное отклонение светосуммы термолюминесценции компактов, отожженных в графитовой стружке, в 4 раза меньше, чем у компактов, отожженных в графитовых тиглях (фиг. 2). Выбор температуры свыше 1100°С объясняется тем, что при такой температуре наблюдается интенсивная диффузия атомов кислорода. За счет чрезвычайно низкого парциального давления кислорода и наличия графита в печи атомы решеточного кислорода диффундируют в окружающую атмосферу с образованием СО и созданием дефицита кислорода в анионной подрешетке диоксида циркония (кислородные вакансии).

Присутствие графита при отжиге обусловливало восстановление поверхности диоксида циркония до карбида циркония. Химическая реакция образования карбида представлена ниже в формуле (1):

ZrO2+3С → ZrC+2СО. (1)

Образование карбида циркония обуславливает потемнение компактов. Это потемнение приводит к уменьшению интенсивности люминесценции диоксида циркония (фиг. 3). Интенсивность люминесценции после термообработки в присутствии графита (кривая 2) значительно ниже интенсивности люминесценции компактов до термообработки (кривая 1).

С целью устранения карбида циркония с поверхности компактов после термообработки в вакууме ZrO2 отжигался на воздухе при температуре 900°C в муфельной печи в течение 1 часа. Соответствующая химическая реакция приведена ниже в формуле (2):

ZrC+O2 → ZrO2+C (2)

При температурах выше 700°C карбид циркония взаимодействует с кислородом с образованием ZrO2. В результате этого происходит восстановление углерода. В обработанных таким образом компактах, представляющих собой керамику, содержание карбида циркония значительно снижается. Из фиг.4 видно, что интенсивность люминесценции обработанного таким образом диоксида циркония (кривая 2) значительно увеличивается в сравнении с не обработанным ZrO2 (кривая 1).

Технический результат – увеличение количества кислородных вакансий в матрице диоксида циркония в результате термохимического окрашивания в восстановительных условиях, что приводит к увеличению интенсивности люминесценции диоксида циркония в полосе 480 нм.

Похожие патенты RU2714811C2

название год авторы номер документа
Способ жидкофазного синтеза многокомпонентного керамического материала в системе ZrO-YO-GdO-MgO для создания электролита твердооксидного топливного элемента 2015
  • Морозова Людмила Викторовна
  • Калинина Марина Владимировна
  • Егорова Татьяна Леонидовна
  • Шилова Ольга Алексеевна
RU2614322C1
Способ получения люминесцентной керамики, содержащей фазу YAG:Ce, для источников белого света 2023
  • Тарала Виталий Алексеевич
  • Вакалов Дмитрий Сергеевич
  • Лапин Вячеслав Анатольевич
  • Медяник Евгений Викторович
  • Воробьев Вячеслав Иванович
  • Миронов Сергей Владимирович
  • Бражко Екатерина Александровна
RU2808387C1
Люминесцентный способ определения неконтролируемых примесей и неоднородности их поверхностного распределения 2023
  • Ларина Наталья Анатольевна
  • Рябочкина Полина Анатольевна
  • Чернов Ефим Ильич
RU2806531C1
Способ получения тонкослойных детекторов ионизирующих излучений для кожной и глазной дозиметрии 2020
  • Мильман Игорь Игориевич
  • Сюрдо Алекандр Иванович
  • Абашев Ринат Мансурович
RU2747599C1
Способ жидкофазного синтеза наноструктурированного керамического материала в системе CeO - SmO для создания электролита твердооксидного топливного элемента 2020
  • Калинина Марина Владимировна
  • Федоренко Надежда Юрьевна
  • Дюскина Дарья Андреевна
  • Шилова Ольга Алексеевна
RU2741920C1
НАНОСТРУКТУРНЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ ЧИСТОГО ТИТАНА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2012
  • Панин Валерий Иванович
  • Панин Сергей Валерьевич
  • Чумаков Максим Владимирович
RU2492256C9
Способ получения профилированных монокристаллов анион-дефектного оксида алюминия для импульсной оптически стимулированной люминесцентной дозиметрии ионизирующих излучений 2022
  • Мильман Игорь Игоревич
  • Сюрдо Александр Иванович
  • Абашев Ринат Мансурович
  • Белов Дмитрий Юрьевич
  • Кравецкий Дмитрий Яковлевич
  • Бородин Владимир Алексеевич
RU2792634C1
СЦИНТИЛЛЯЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ ZnO-КЕРАМИКИ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СЦИНТИЛЛЯТОР 2012
  • Горохова Елена Ильинична
  • Орещенко Евгения Александровна
  • Еронько Сергей Борисович
  • Демиденко Владимир Александрович
  • Козловский Станислав Станиславович
  • Родный Петр Александрович
  • Черненко Кирилл Александрович
RU2499281C1
ПОЛИКРИСТАЛЛИЧЕСКИЙ МАТЕРИАЛ, СПОСОБ И УСТРОЙСТВО ДЛЯ ЕГО ПОЛУЧЕНИЯ, ИЗДЕЛИЕ ИЗ ЭТОГО МАТЕРИАЛА 1999
RU2199616C2
Получение наноструктурированных материалов на основе BaZrO 2023
  • Гаджимагомедов Султанахмед Ханахмедович
  • Рабаданов Муртазали Хулатаевич
  • Сайпулаев Пайзула Магомедтагирович
  • Рабаданова Аида Энверовна
  • Палчаев Даир Каирович
  • Мурлиева Жарият Хаджиевна
  • Шабанов Наби Сайдуллахович
  • Рабаданов Камиль Шахриевич
  • Амиров Ахмед Магомедрасулович
  • Магомедов Курбан Эдуардович
  • Эмиров Руслан Мурадович
  • Алиханов Нариман Магомед-Расулович
  • Фараджев Шамиль Пиралиевич
  • Хибиева Лиана Руслановна
  • Шапиев Гусейн Шапиевич
RU2808853C1

Иллюстрации к изобретению RU 2 714 811 C2

Реферат патента 2020 года Способ повышения интенсивности люминесценции оксидных диэлектриков

Изобретение может быть использовано в фотонике, лазерной технике и оптоэлектронике при изготовлении лазерных фотоприемников, оптически активных слоёв фотолюминесцентных, катодолюминесцентных и электролюминесцентных устройств, амперометрических биосенсоров, хемилюминесцентных сенсоров, золь-гелевых стекол. Нанопорошок ZrO2 подвергают холодному одноосному прессованию при давлении 900–1100 кг⋅с/см2. Полученные компакты термообрабатывают в вакууме при температуре более 1100°С в присутствии графитовой стружки, полностью окружающей компакты. Затем компакты повторно обрабатывают на воздухе при температуре более 700°С в течение 1 ч. Технический результат – увеличение количества кислородных вакансий в матрице диоксида циркония, что приводит к увеличению интенсивности люминесценции диоксида циркония в полосе 480 нм. 4 ил.

Формула изобретения RU 2 714 811 C2

Способ повышения интенсивности люминесценции оксидных диэлектриков, включающий холодное одноосное прессование нанопорошка ZrO2 при давлении 900–1100 кгс/см2 с получением компактов с последующей их термообработкой, отличающийся тем, что термообработку осуществляют в вакууме при температуре более 1100°С в присутствии графита в виде графитовой стружки, полностью окружающей компакты, с последующей повторной обработкой компактов на воздухе при температуре более 700°С в течение 1 часа.

Документы, цитированные в отчете о поиске Патент 2020 года RU2714811C2

NIKIFOROV S.V
et al
Luminescent properties of monoclinic zirconium oxide, J
of Luminescence, 2015, v.166, р.р
Говорящий кинематограф 1920
  • Коваленков В.И.
SU111A1
ЛЮМИНЕСЦЕНТНОЕ ВЕЩЕСТВО 1991
  • Кожевникова Н.М.
  • Мурзаханова И.И.
  • Мохосоев М.В.
RU2024570C1
РАБОЧЕЕ ВЕЩЕСТВО ДЛЯ ТЕРМОЛЮМИНЕСЦЕНТНОГО ДОЗИМЕТРА ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ 1996
  • Алукер Н.Л.
  • Алукер Э.Д.
RU2108598C1
Люминесцентное вещество 2016
  • Кожевникова Нина Михайловна
RU2628781C1
Изложница с суживающимся книзу сечением и с вертикально перемещающимся днищем 1924
  • Волынский С.В.
SU2012A1
Способ защиты переносных электрических установок от опасностей, связанных с заземлением одной из фаз 1924
  • Подольский Л.П.
SU2014A1
Способ защиты переносных электрических установок от опасностей, связанных с заземлением одной из фаз 1924
  • Подольский Л.П.
SU2014A1
МАРКОВСКИЙ Л.Я
и др
Люминофоры,

RU 2 714 811 C2

Авторы

Никифоров Сергей Владимирович

Конев Сергей Федорович

Меньшенина Анастасия Алексеевна

Даты

2020-02-19Публикация

2018-07-25Подача