Изобретение относится к пассивным радиосистемам, предназначенным для наблюдения за движущимися объектами в радио диапазоне длин волн.
Система состоит из двух взаимно удаленных и ориентированных в пространстве радиоприемников с антенными решетками (АР), составленными из нескольких приемных элементов, которые принимают отраженный от объекта радиосигнал. Ориентация задается матрицей Р поворота трех осей координат второго приемника по отношению к первому приемнику и базовым вектором b, соединяющим центры двух прямоугольных систем координат.
Радиопередатчик, расположенный отдельно от радиоприемников, посылает в отдельные моменты времени t периодический радиосигнал s(t) c известными параметрами в сторону области пересечения диаграмм направленности антенн (ДНА) радиоприемников, которую пересекает движущийся с определенной скоростью объект наблюдения (воздушный или наземный).
Радиоприемники принимают отраженный от объекта полезный радиосигнал, а также помехи в виде сигналов переотражения от местности, возникающие с некоторой задержкой во времени по отношению к полезному сигналу. Присутствуют шумы аппаратуры.
Принятые в радиоприемниках радиосигналы s1(t) и s2(t) проходят первичную обработку, преобразуются в q-x измерительных каналах (по числу Q приемных элементов АР) в комплексные спектры на j-х доплеровских частотах ƒj. После чего выделяются спектральные составляющие соответствующие доплеровской частоте объекта, которые поступают на устройство (или алгоритм) определения угловых координат объекта (азимута и угла места).
Известные способы определения угловых координат объекта по совокупности выделенных комплексных амплитуд в приемопередающем радиоприемнике. Например, способы, основанные на моноимпульсном [1] и фазовом [2] методах. Для повышения точности выделения комплексных амплитуд известен также способ [3]. Результатом применения данных способов являются угловые координаты объекта (азимут и угол места) ϕ и θ, найденные в системе координат радиоприемника.
Однако для определения пространственных координат объекта в пассивном режиме наблюдения необходимо знать радиальные дальности r1 и r2 до объекта. Способы [1-3] рассчитаны на активные радиосистемы с приемопередающими антеннами, где дальности определяются по временной задержке переданного сигнала, и не применимы для пассивных наблюдений.
Известен способ [4] для пассивной системы, состоящей из стереопары пространственно удаленных и взаимно ориентированных приемников, где дальности r1 и r2 определяются на основе ортов а1 и а2 векторов М1=r1а1 и М2=r2а2 направлений на объект. Орты находятся на основе измеренных в i-х приемниках (i=1, 2) угловых координат объекта ϕi, θi по формуле:
в местных системах координат Oi,Xi,Yi,Zi, где оси OiZi направлены в сторону объекта, оси OiXi и OiZi расположены в горизонтальной плоскости, ось OiYi - в вертикальной, угол ϕi отсчитывается от оси OiZi в плоскости Oi,Xi,Zi, угол θi - в вертикальной плоскости относительно Oi,Xi,Zi.
Дальности r1 и r2 находятся из условия сопряжения векторов М1 и М2:
где - вектор а2, пересчитанный в систему координат первого приемника; е - вектор ошибок сопряжения. Из (2) методом наименьших квадратов определяется вектор оценок дальностей до объекта:
Соединение двух подходов представляет сущность предлагаемого способа определения пространственных координат движущегося объекта. Рассмотрим в качестве прототипа способ [2], который применительно к пассивному наблюдению сводится к следующему.
1. Центры приемных элементов АР в плоскости антенны радиоприемника располагают в точках с координатами (x1,y1)=(d/2,0), (х2,у2)=(0, d/2), (х3,у3)=(-d/2,0), (х4,у4)=(0, -d/2), где d - базовое расстояние между центрами приемных элементов.
2. При данном направлении линии визирования антенны фиксируют поступление полезного сигнала sq{t) на промежутке времени до момента прихода переотраженных сигналов одновременно в q-x приемных каналах: горизонтальном (для 1-го и 3-го приемных элементов) и вертикальном (для 2-го и 4-го приемных элементов).
3. Формируют в цифровой форме временные последовательности sq(tj), (n - число временных отсчетов), которые подвергают дискретному преобразованию Фурье (ДПФ). В результате преобразуются в комплексные спектры в q-x каналах,
4. Выделяют спектральные составляющие сигнала на доплеровской частоте ƒj, амплитуда которых превышает порог обнаружения полезного сигнала во всех q-x каналах.
5. Находят аргументы комплексных величин - фазы и вычисляют разности фаз по азимуту ϕ для горизонтальных каналов (q=1 и 3) и по углу места θ для вертикальных каналов (q=2 и 4):
Δψϕ = ψ1-ψ3, Δψθ = ψ2-ψ4.
6. Для полученных разностей фаз вычисляют угловые координаты по формуле (λ - длина волны):
Недостаток данного способа заключается в том, что в пассивном режиме работы радиоприемника невозможно найти дальность r до объекта и определить его пространственные координаты.
Предлагаемое техническое решение направлено на устранение этого недостатка, а именно на определение дальности до объекта в пассивном режиме работы радиоприемников и нахождение его пространственных координат.
Технический результат предлагаемого технического решения достигается применением способа определения пространственных координат движущегося объекта пассивной радиосистемой, который заключается в приеме радиосигнала отражения от объекта антенной радиоприемника с четырьмя приемными элементами, преобразовании этого сигнала в четырех измерительных каналах в спектральные последовательности на доплеровских частотах, выделении четырех спектральных составляющих на доплеровской частоте объекта, нахождении из них разностей фаз и вычислении угловых координат азимута и угла места положения объекта умножением найденных разностей фаз на известный коэффициент, отличающийся тем, что к первому радиоприемнику добавляют второй радиоприемник, пространственно удаленный и взаимно ориентированный с первым матрицей Р поворота осей и базовым вектором b, принимают в радиоприемниках радиосигнал, переданный отдельно расположенным радиопередатчиком и отраженный от объекта, выделяют из принятого сигнала спектральные составляющие на доплеровской частоте объекта в измерительных каналах, определяют из них разности фаз в горизонтальном и вертикальном каналах и умножением разностей фаз на известный коэффициент вычисляют угловые координаты азимута и угла места положения объекта в системах координат двух радиоприемников, после чего на основе найденных угловых координат определяют орты а1 и а2 векторов направлений на объект, преобразуют орт а2 в орт умножением его слева на матрицу Р и вычисляют на основе координат двух векторов a1, матрицу Н, далее умножают матрицу Н справа на базовый вектор b и получают вектор оценок дальностей r1 и r2 до объекта, затем умножают дальности на орты а1, а2 и находят векторы М1=r1а1 и М2=r2а2 пространственных координат объекта в системах координат двух приемников.
Алгоритмически способ сводится к следующему.
1. Размещают два взаимно удаленных и ориентированных в пространстве радиоприемника с антеннами в виде АР из четырех приемных элементов.
2. Радиопередатчик, расположенный отдельно от приемников, посылает в определенные моменты времени t периодический радиосигнал s(t) с известными параметрами в сторону области пересечения ДНА приемников, которую пересекает движущийся объект.
3. Радиоприемники принимают отраженные от объекта сигналы соответственно s1(t) и s2(t), которые в трактах первичной обработки преобразуются в цифровой форме во временные n-последовательности в q-х приемных каналах каждого i-го приемника (i=1, 2). Временные поледовательности преобразуются с помощью ДПФ в комплексные спектры на j-x доплеровских частотах
4. Выделяются комплексные спектральные составляющие и спектров, соответствующие доплеровской частоте движущегося объекта ƒj. Находятся аргументы комплексных величин - фазы и вычисляются разности фаз п азимуту ϕ для горизонтальных каналов (q=1, 3) и по углу места θ для вертикальных каналов (q=2, 4): Δψiϕ = ψi1-ψi3, Δψiθ = ψi2-ψi4, i=1, 2.
Для полученных разностей фаз находятся оценки угловых координат (4):
ϕi = kΔψiϕ, θi = kΔψiθ, k=λ/(πd), i=1, 2.
5. Для найденных угловых координат ϕi, θi, i=1, 2, определяются орты а1 и а2 векторов направлений на объект по формуле (1). Координаты орта второго приемника преобразуются в систему координат первого приемника умножением а2 справа на матрицу Р поворота осей: Из координат двух векторов составляется матрица А по формуле (2) и вычисляется матрица Н по формуле (3).
6. Вычисляется вектор R оценок дальностей r1 и r2 до объекта умножением матрицы Н справа на базовый вектор b по формуле (3), и умножением ортов а1, а2 на дальности r1, r2 находятся векторы М1=r1а1 и М2=r2а2 пространственных координат объекта в системах координат двух приемников.
Предложенный способ, в отличие от активных радиотехнических систем, позволяет в пассивном режиме наблюдения за объектом определить дальности до объекта и его пространственные координаты на основе решения системы уравнений для сопряженных векторов направлений на объект.
Способ может найти применение в пассивных радиотехнических системах слежения за движущимися объектами.
Литература
1. Патент RU 2534224.
2. Патент RU 2572357.
3. Патент RU 2661913.
4. Патент RU 2681518.
Изобретение относится к пассивным радиосистемам, предназначенным для наблюдения за движущимися объектами в радиодиапазоне длин волн. Достигаемый технический результат – определение дальности до объекта в пассивном режиме работы радиоприемников и определение его пространственных координат. Указанный результат достигается за счет того, что для реализации способа определения координат движущегося объекта пассивной радиосистемой используют два взаимно удаленных и ориентированных в пространстве радиоприемника с антенными решетками, которые принимают отраженный от движущегося объекта радиосигнал, переданный радиопередатчиком, расположенным отдельно от радиоприемников. По результатам обработки принятых сигналов на доплеровских частотах определяются угловые координаты объекта и орты векторов направлений на объект. Способ, в отличие от активных радиолокационных систем, позволяет в пассивном режиме наблюдения за объектом определить дальности до объекта и его пространственные координаты на основе решения системы уравнений для сопряженных векторов направлений на объект.
Способ определения пространственных координат движущегося объекта пассивной радиосистемой, заключающийся в приеме радиосигнала отражения от объекта антенной радиоприемника с четырьмя приемными элементами, преобразовании этого сигнала в четырех измерительных каналах в спектральные последовательности на доплеровских частотах, выделении четырех спектральных составляющих на доплеровской частоте объекта, нахождении из них разностей фаз и вычислении угловых координат азимута и угла места положения объекта умножением найденных разностей фаз на известный коэффициент, отличающийся тем, что к первому радиоприемнику добавляют второй радиоприемник, пространственно удаленный и взаимно ориентированный с первым матрицей Р поворота осей и базовым вектором b, принимают в радиоприемниках радиосигнал, переданный отдельно расположенным радиопередатчиком и отраженный от объекта, выделяют из принятого сигнала спектральные составляющие на доплеровской частоте объекта в измерительных каналах, определяют из них разности фаз в горизонтальном и вертикальном каналах и умножением разностей фаз на известный коэффициент вычисляют угловые координаты азимута и угла места положения объекта в системах координат двух радиоприемников, после чего на основе найденных угловых координат определяют орты а1 и а2 векторов направлений на объект, преобразуют орт а2 в орт умножением его слева на матрицу Р и вычисляют на основе координат двух векторов матрицу Н, далее умножают матрицу Н справа на базовый вектор b и получают вектор оценок дальностей r1 и r2 до объекта, затем умножают дальности на орты а1, а2 и находят векторы М1=r1a1 и М2=r2a2 пространственных координат объекта в системах координат двух приемников.
СПОСОБ ОПРЕДЕЛЕНИЯ ДАЛЬНОСТЕЙ ДО ОБЪЕКТОВ В ПАССИВНЫХ СИСТЕМАХ ВИДЕНИЯ | 2018 |
|
RU2681518C1 |
СПОСОБ ПАССИВНОЙ РАДИОЛОКАЦИИ | 2014 |
|
RU2560089C1 |
Система пассивной локации для определения координат летательного аппарата в ближней зоне аэродрома и на этапе захода на посадку с резервным каналом определения дальности | 2016 |
|
RU2633380C1 |
СПОСОБ ПАССИВНОГО ОБНАРУЖЕНИЯ И ПРОСТРАНСТВЕННОЙ ЛОКАЛИЗАЦИИ ПОДВИЖНЫХ ОБЪЕКТОВ | 2011 |
|
RU2471200C1 |
US 10310066 B1, 04.06.2019 | |||
WO 2002067008 A1, 29.08.2002 | |||
KR 2018057008 A, 30.05.2018. |
Авторы
Даты
2020-04-21—Публикация
2019-09-24—Подача