Изобретение относится к области электротехники и может быть использовано в электроприводе для регулирования асинхронных двигателей с короткозамкнутым ротором, в том числе тяговых, преимущественно в электромобилях.
Изобретение относится к регулируемому асинхронному электроприводу и может быть использовано при регулировании асинхронных двигателей, в частности двигателей с короткозамкнутым ротором, в том числе тяговых.
Известен способ управления асинхронными двигателями (Патент РФ №2254666), при котором регулятор момента формирует вектор потокосцепления ротора путем формирования задания его мгновенных значений, амплитуда и частота которых зависит от задания момента. Путем изменения частоты достигается формирование оптимального, с точки зрения минимизации потребления тока статора, угла между векторами тока статора и потокосцепления ротора, равным 45°. На основе полученных задающих сигналов, обеспечивающих минимум потерь в управляемом двигателе, осуществляется управление автономным инвертором, формирующего питание исполнительного асинхронного двигателя.
Недостатком данного способа является низкое быстродействие формирования электромагнитного момента.
Наиболее близким техническим решением к заявляемому способу является патент «Электропривод переменного тока» (Патент RU 180979 U1), при котором в электроприводе с асинхронным двигателем с короткозамкнутым ротором, питаемым от силового преобразователя, реализующего векторное управление с прямым и обратным преобразованиями Парка и Кларка и имеющего входы сигналов управления составляющих тока статора по оси абсцисс, по оси ординат и сигнала частоты тока статора, при этом формируются сигнал задания момента, сигнал пропорциональный частоте вращения ротора и на базе сигнала задания момента - сигнал задания абсолютного скольжения, обеспечивающего минимум потерь в меди.
Недостатком способа - прототипа является низкая скорость протекания переходных электромагнитных процессов в асинхронном двигателе и, соответственно, низкое быстродействие формирования электромагнитного момента.
Техническим результатом, который обеспечивается изобретением, является повышение скорости формирования электромагнитного момента при изменении управляющего сигнала задания момента.
Указанный технический результат обеспечивается тем, что в способе управления асинхронным двигателем (АД) с короткозамкнутым ротором, питаемым от силового преобразователя, реализующем векторное управление АД с прямым и обратным преобразованиями Парка и Кларка, и имеющим входы сигналов управления составляющих тока статора по оси абсцисс, по оси ординат и сигнала частоты тока статора, при этом формируют сигнал задания момента, сигнал пропорциональный частоте вращения ротора и на базе сигнала задания момента - формируют сигнал задания абсолютного скольжения, обеспечивающего минимум потерь в меди, при этом формируют корректирующий сигнал, который задает составляющую тока статора по оси ординат, который, суммируясь с сигналом задания момента, задает составляющую тока статора по оси абсцисс и, суммируясь с сигналом задания абсолютного скольжения и сигналом, пропорциональным частоте вращения ротора, задает частоту тока статора.
Суть работы предлагаемого способа управления асинхронным двигателем заключается в следующем.
Известен способ управления асинхронным двигателем с минимальными потерями в меди (см., например, Булгаков А.А. Частотное управление асинхронными двигателями. М.: Энергоиздат, 1982, 216 с., с. 51-78) при котором обеспечивается поддержание величины абсолютного скольжения на постоянном уровне, при этом β=r2/L2. Однако в этом случае электромагнитные переходные процессы в двигателе протекают недостаточно быстро, например, чтобы удовлетворить требованиям по безопасному вождению электромобиля с асинхронным тяговым двигателем. Предложенный способ решает данную проблему на требуемом уровне.
Для пояснения сути предложенных решений рассмотрим систему дифференциальных уравнений роторных цепей и электромагнитного момента асинхронного двигателя. Математическое описание АД строится на основе теории обобщенной двухфазной электрической машины (например, Соколов М.М., Петров Л.П., Ладерзон В.А. Электромагнитные переходные процессы в асинхронном электроприводе. М., Энергия, 1967). Уравнения АД при известных допущениях и обозначениях в относительных единицах имеют вид:
Для аналитической оценки динамики процесса формирования электромагнитного момента и для нахождения путей ускорения этого процесса необходимо иметь соответствующую передаточную функцию. Но так как представленные уравнения (1) не линейны, линеаризуем их, записав в операторном виде:
Проведя соответствующие преобразования и не рассматривая звенья с постоянными времени, меньшими на порядок и более основной постоянной времени, из уравнений (2), получим требуемую передаточную функцию:
где:
Из полученной передаточной функции видно, что динамика формирования электромагнитного момента асинхронного двигателя определяется динамическими характеристиками задания управляющих параметров - ΔiX1(p) (тока статора по оси абсцисс), ΔiY1(p) (тока статора по оси ординат) и Δβ(р) (частоты тока статора). Форсируя каждый из этих параметров можно обеспечить уменьшение времени формирования ΔМ(р). Но так как, мы имеем дело с линеаризованной моделью формирования ΔМ(р), то применим принцип суперпозиции и суммарное влияние динамических характеристик каждого из управляющих параметров приводит к суммирующему эффекту в процесс изменения момента. Но при этом необходимо учитывать изменение знака задания абсолютного скольжения частоты тока статора с ограничением уровня выходного сигнала, до величины, обеспечивающей требуемое значение абсолютного скольжения в установившихся режимах работы асинхронного двигателя.
Из этого положения вытекает суть предлагаемого способа. По каждому управляющему каналу синхронно вводится дополнительная энергия, обеспечивающая, как показывают результаты математического моделирования и проведенные стендовые испытания, увеличение в 7-10 раз быстродействия электропривода, реализующего предложенный способ управления.
Предложение соответствует всем критериям охраноспособности изобретения, потому что является промышленно применимым, так как может быть использовано в предложенном виде в электротехнической промышленности, новым, так как в предложенной совокупности признаков оно не известно из уровня техники, и соответствует изобретательскому уровню, так как для специалиста оно явным образом не следует из уровня техники и достигает новых технических результатов.
название | год | авторы | номер документа |
---|---|---|---|
Устройство управления асинхронным двигателем | 2019 |
|
RU2723671C1 |
СПОСОБ ОЦЕНКИ РЕГУЛИРУЕМЫХ СИГНАЛОВ ТРЕХФАЗНОГО ДВИГАТЕЛЯ С КОРОТКОЗАМКНУТЫМ РОТОРОМ | 1998 |
|
RU2158471C2 |
СПОСОБ ОЦЕНКИ РЕГУЛИРУЕМЫХ СИГНАЛОВ ТРЕХФАЗНОГО ДВИГАТЕЛЯ С КОРОТКОЗАМКНУТЫМ РОТОРОМ | 1998 |
|
RU2158472C2 |
СПОСОБ ФОРМИРОВАНИЯ ПОТОКОСЦЕПЛЕНИЯ РОТОРА АСИНХРОННОГО ДВИГАТЕЛЯ В СОСТАВЕ ЭЛЕКТРОПРИВОДА С ВЕКТОРНЫМ ПОЛЕОРИЕНТИРОВАННЫМ УПРАВЛЕНИЕМ ПРИ РАБОТЕ В ЗОНЕ ОГРАНИЧЕННОГО НАПРЯЖЕНИЯ | 2021 |
|
RU2759558C1 |
СПОСОБ ЧАСТОТНОГО УПРАВЛЕНИЯ АСИНХРОННЫМ ЭЛЕКТРОПРИВОДОМ | 2016 |
|
RU2626325C1 |
ЧАСТОТНО-РЕГУЛИРУЕМЫЙ АСИНХРОННЫЙ ЭЛЕКТРОПРИВОД | 2008 |
|
RU2401502C2 |
СПОСОБ ПЛАВНОГО УПРАВЛЕНИЯ АСИНХРОННЫМ ЭЛЕКТРОДВИГАТЕЛЕМ С КОРОТКОЗАМКНУТЫМ РОТОРОМ | 2003 |
|
RU2256285C1 |
СПОСОБ УПРАВЛЕНИЯ ЧАСТОТНО-РЕГУЛИРУЕМЫМ АСИНХРОННЫМ ДВИГАТЕЛЕМ С КОРОТКОЗАМКНУТЫМ РОТОРОМ | 2008 |
|
RU2402866C2 |
Частотно-управляемый электропривод | 1981 |
|
SU1010714A1 |
Способ управления асинхронным двигателем | 1976 |
|
SU658692A1 |
Изобретение относится к области электротехники. Техническим результатом является минимизация времени протекания переходных электромагнитных процессов в асинхронном двигателе при минимальных потерях в меди. Предлагается способ управления асинхронным двигателем (АД) с короткозамкнутым ротором, питаемым от силового преобразователя, реализующего векторное управление АД с прямым и обратным преобразованиями Парка и Кларка. Ротор имеет входы сигналов управления составляющих тока статора по оси абсцисс, по оси ординат и сигнала частоты тока статора. Формируют сигнал задания момента, сигнал, пропорциональный частоте вращения ротора, и на базе сигнала задания момента формируют сигнал задания абсолютного скольжения, обеспечивающего минимум потерь в меди. Формируют корректирующий сигнал, который задает составляющую тока статора по оси ординат, который, суммируясь с сигналом задания момента, задает составляющую тока статора по оси абсцисс; суммируясь с сигналом задания абсолютного скольжения и сигналом, пропорциональным частоте вращения ротора, задает частоту тока статора.
Способ управления асинхронным двигателем (АД) с короткозамкнутым ротором, питаемым от силового преобразователя, реализующего векторное управление АД с прямым и обратным преобразованиями Парка и Кларка, и имеющим входы сигналов управления составляющих тока статора по оси абсцисс, по оси ординат и сигнала частоты тока статора, при этом формируют сигнал задания момента, сигнал, пропорциональный частоте вращения ротора, и на базе сигнала задания момента формируют сигнал задания абсолютного скольжения, обеспечивающий минимум потерь в меди, отличающийся тем, что формируют корректирующий сигнал, который задает составляющую тока статора по оси ординат и, суммируясь с сигналом задания момента, задает составляющую тока статора по оси абсцисс и, суммируясь с сигналом задания абсолютного скольжения и сигналом, пропорциональным частоте вращения ротора, задает частоту тока статора.
ЭЛЕКТРОХИМИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ МЕХАНИЧЕСКИХ ВОЗДЕЙСТВИЙ В ЭЛЕКТРИЧЕСКИЙ СИГНАЛ | 0 |
|
SU180979A1 |
УСТРОЙСТВО ДЛЯ УПРАВЛЕНИЯ ДВИГАТЕЛЕМ ДВОЙНОГО ПИТАНИЯ | 2011 |
|
RU2477562C1 |
ЭЛЕКТРОПРИВОД ПЕРЕМЕННОГО ТОКА | 2004 |
|
RU2254666C1 |
СПОСОБ ЧАСТОТНОГО УПРАВЛЕНИЯ ЭЛЕКТРОМАГНИТНЫМ МОМЕНТОМ АСИНХРОННОГО ДВИГАТЕЛЯ | 2010 |
|
RU2414806C1 |
Пресс для образования тюков | 1977 |
|
SU664609A1 |
JP 4304183 A, 27.10.1992. |
Авторы
Даты
2020-06-22—Публикация
2019-09-05—Подача