Изобретение относится к регулируемому асинхронному электроприводу и может быть использовано при регулировании асинхронных двигателей (АД), в частности двигателей с короткозамкнутым ротором, в том числе тяговых, преимущественно для электромобилей.
Известно устройство (Патент РФ №2254666), реализующее управления асинхронным двигателем с абсолютным скольжением, обеспечивающим минимум потерь в меди.
Недостатком данного способа является низкое быстродействие формирования электромагнитного момента.
Наиболее близким техническим решением к заявляемому устройству является патент «Электропривод переменного тока» (Патент RU 180979 U1), при котором в электроприводе переменного тока, содержащем асинхронный двигатель и инвертор с широтно-импульсным (ШИМ) регулятором тока, два датчика тока статора, датчик скорости, систему задания продольной составляющей тока статора и систему управления поперечной составляющей тока статора с блоками преобразования трехфазной системы координат в прямоугольную вращающуюся систему координат и обратного преобразования, введены блоки фильтрации измеряемых сигналов продольной и поперечной составляющих тока статора и разности этих сигналов, блок расчета и корректирующего сигнала продольной составляющей тока статора, блок ограничения сигнала задания продольной составляющей тока статора.
Недостатком устройства - прототипа является низкая скорость протекания переходных электромагнитных процессов в асинхронном двигателе и, соответственно, низкое быстродействие формирования электромагнитного момента.
Известно устройство управления асинхронным двигателем с минимальными потерями в меди (см., например, Булгаков А.А. Частотное управление асинхронными двигателями. М: Энергоиздат, 1982, 216 с., с. 51-78) при котором обеспечивается поддержание величины абсолютного скольжения на постоянном уровне, при этом β=r2/L2. Однако в этом случае электромагнитные переходные процессы в двигателе протекают недостаточно быстро, например, чтобы удовлетворить требованиям по безопасному вождению электромобиля с асинхронным тяговым двигателем. Предложенное устройство решает данную проблему обеспечения необходимого быстродействия на требуемом уровне. Описание процесса приведено ниже.
Технической задачей предполагаемого изобретения является повышение быстродействия управления АД.
Техническим результатом, который обеспечивается изобретением, является повышение скорости формирования электромагнитного момента при изменении управляющего сигнала задания момента.
Указанный технический результат обеспечивается тем, что устройство управления асинхронным двигателем (АД) содержит асинхронный двигатель 1, преобразователь 2, реализующий векторное управление с прямым и обратным преобразованиями Парка и Кларка и имеющего входы сигналов задания составляющих тока статора по оси абсцисс А, по оси ординат Б и частоты тока статора В, датчик 3 частоты вращения ротора АД 1 и задатчик 4 момента, при этом фазные входы асинхронного двигателя 1 соединены с выходами преобразователя 2, вал асинхронного двигателя жестко соединен с датчиком 3 частоты вращения ротора АД 1, причем задатчик 4 момента соединен своим выходом 4а со следующими входами: входом 5а релейного усилителя-ограничителя 5 абсолютного скольжения, со входом 6а реального форсирующего звена бис первым входом 7а первого сумматора 7, выход 6б реального форсирующего звена 6 соединен со вторым входом 7б первого сумматора 7 и с вторым входом 8а второго сумматора 8, первый вход 8б которого соединен с выходом 5б релейного усилителя-ограничителя 5 абсолютного скольжения, а третий вход 8в сумматора 8 соединен с выходом 3а датчика 3 частоты вращения ротора АД 1, входы сигналов задания составляющих соединены соответственно для составляющей тока статора по оси абсцисс А с выходом 7в первого сумматора 7, по оси ординат Б - с выходом 66 реального форсирующего звена 6 и частоты тока статора В преобразователя 2-е выходом 8г второго сумматора 8.
Реальное форсирующее звено реализует операцию дифференцирования с последующим затуханием, что позволяет создать крутой фронт управляющих сигналов и обеспечить дополнительный подвод задающей энергии к управляющему устройству, в данном случае ко всем входам А, Б и В преобразователя 2.
Суть работы предлагаемого устройства управления асинхронным двигателем заключается в следующем.
Проведя соответствующие преобразования в системе известных дифференциальных уравнений роторных цепей и электромагнитного момента асинхронного двигателя в относительных единицах (см. книгу Соколов М.М., Петров Л.П., Ладерзон В.А. Электромагнитные переходные процессы в асинхронном электроприводе. М., Энергия, 1967) и, не рассматривая звенья с постоянными времени, меньшими на порядок и более основной постоянной времени, из линеаризованных уравнений получим требуемую передаточную функцию:
где:
Очевидно, что полученная динамика формирования электромагнитного момента асинхронного двигателя определяется динамическими характеристиками задания управляющих параметров - ΔiХ1(p) (тока статора по оси абсцисс), ΔiУ1(p) (тока статора по оси ординат) и Δβ(р) (частоты тока статора). Форсируя каждый из этих параметров можно обеспечить уменьшение времени формирования ΔМ(р). Но так как, мы имеем дело с линеаризованной моделью формирования ΔМ(р), то применим принцип суперпозиции и суммарное влияние динамических характеристик каждого из управляющих параметров приводит к суммарному эффекту в процесс изменения момента.
Из этого положения вытекает суть работы предлагаемого устройства. По каждому управляющему каналу крутым фронтом вводится дополнительная энергия, сигнал задания которой формируется на выходе 6б реального формирующего звена 6 в зависимости от скорости изменения сигнала задания момента на выходе 4а блока 4. Этот сигнал задания форсирующей энергии поступает на вход Б преобразователя 2, суммируется с сигналом задания момента, поступая на вход 7б первого сумматора 7, выход 7в которого соединен со входом А преобразователя 2, кроме того, сигнал задания форсирующей энергии суммируется сигналом задания абсолютного скольжения - вход 8а второго сумматора 8, соединенного своим выходом 8г со входом В преобразователя 2. Таким образом, устройство, построенное по предлагаемой схеме, обеспечивает, как показывают результаты математического моделирования и проведенные стендовые испытания, увеличение в 7-10 раз скорости протекания переходных электромагнитных процессов в асинхронном двигателе при управлении по минимуму электрических потерь.
Реальное форсирующее звено в предлагаемом устройстве имеет передаточную функцию а релейный усилитель-ограничитель 5 абсолютного скольжения представляет собой реле, определяющее знак сигнала задания момента с выхода задатчика момента 4 и соответствующим образом измененяя знак задания абсолютного скольжения с ограничением уровня выходного сигнала, до величины, обеспечивающей требуемое значение абсолютного скольжения в установившихся режимах работы асинхронного двигателя.
Предложение соответствует всем критериям охраноспособности изобретения, потому что является промышленно применимым, так как может быть использовано в предложенном виде в электротехнической промышленности, новым, так как в предложенной совокупности признаков оно не известно из уровня техники, и соответствует изобретательскому уровню, так как для специалиста оно явным образом не следует из уровня техники и достигает новых технических результатов.
название | год | авторы | номер документа |
---|---|---|---|
ЧАСТОТНО-РЕГУЛИРУЕМЫЙ АСИНХРОННЫЙ ЭЛЕКТРОПРИВОД | 2008 |
|
RU2401502C2 |
Частотно-управляемый электропривод | 1981 |
|
SU1010714A1 |
Способ управления асинхронным двигателем | 2019 |
|
RU2724128C1 |
ЧАСТОТНО-РЕГУЛИРУЕМЫЙ АСИНХРОННЫЙ ЭЛЕКТРОПРИВОД | 2006 |
|
RU2313894C1 |
Электропривод с асинхронным двигателем с массивным обмотанным ротором | 1976 |
|
SU610276A1 |
Электропривод переменного тока | 1980 |
|
SU1007169A1 |
Устройство для регулирования асинхронного двигателя | 1983 |
|
SU1202006A1 |
Частотнорегулируемый электропривод | 1985 |
|
SU1292156A1 |
Асинхронный электропривод | 1987 |
|
SU1443111A2 |
Электропривод | 1987 |
|
SU1515324A1 |
Изобретение относится к электротехнике. Технический результат заключается в повышении скорости формирования электромагнитного момента при изменении управляющего сигнала задания момента. Устройство управления содержит асинхронный двигатель. Преобразователь реализует векторное управление с прямым и обратным преобразованиями Парка и Кларка и имеет входы сигналов задания составляющих тока статора по оси абсцисс, по оси ординат и частоты тока статора. А также датчик частоты вращения ротора и задатчик момента. Фазные входы асинхронного двигателя соединены с выходами преобразователя. Вал асинхронного двигателя жестко соединен с датчиком частоты вращения. Выход задатчика момента соединен с входами релейного усилителя-ограничителя абсолютного скольжения, реального форсирующего звена и с первым входом первого сумматора. Выход реального форсирующего звена соединен с вторым входом первого сумматора и с вторым входом второго сумматора. Первый вход сумматора соединен с выходом релейного усилителя-ограничителя абсолютного скольжения, а третий вход соединен с выходом датчика частоты вращения ротора. Входы сигналов задания составляющих тока статора по оси абсцисс, по оси ординат и частоты тока статора преобразователя соединены с выходом первого сумматора, выходом реального форсирующего звена и выходом второго сумматора соответственно. 1 ил.
Устройство управления асинхронным двигателем, содержащее асинхронный двигатель (АД) 1, преобразователь 2, реализующий векторное управление с прямым и обратным преобразованиями Парка и Кларка и имеющий входы сигналов задания составляющих тока статора по оси абсцисс А, по оси ординат Б и частоты тока статора В, датчик 3 частоты вращения ротора АД 1 и задатчик 4 момента, при этом фазные входы асинхронного двигателя 1 соединены с выходами преобразователя, вал асинхронного двигателя жестко соединен с датчиком 3 частоты вращения ротора АД 1, отличающееся тем, что выход задатчика момента соединен со следующими входами: входом 5а релейного усилителя-ограничителя 5 абсолютного скольжения, с входом 6а реального форсирующего звена 6 и с первым входом 7а первого сумматора 7, выход реального форсирующего звена 6 соединен с вторым входом 7б первого сумматора 7 и с вторым входом 8а второго сумматора 8, первый вход 8б которого соединен с выходом 5б релейного усилителя-ограничителя 5 абсолютного скольжения, а третий вход 8в сумматора 8 соединен с выходом 3а датчика 3 частоты вращения ротора АД 1, входы сигналов задания составляющих соединены соответственно для составляющей тока статора по оси абсцисс А с выходом 7в первого сумматора 7, для составляющей тока статора по оси ординат Б - с выходом 6б реального форсирующего звена 6 и частоты тока статора В преобразователя 2 - с выходом 8г второго сумматора 8.1
ЭЛЕКТРОХИМИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ МЕХАНИЧЕСКИХ ВОЗДЕЙСТВИЙ В ЭЛЕКТРИЧЕСКИЙ СИГНАЛ | 0 |
|
SU180979A1 |
УСТРОЙСТВО ДЛЯ УПРАВЛЕНИЯ ДВИГАТЕЛЕМ ДВОЙНОГО ПИТАНИЯ | 2011 |
|
RU2477562C1 |
СПОСОБ ЧАСТОТНОГО УПРАВЛЕНИЯ ЭЛЕКТРОМАГНИТНЫМ МОМЕНТОМ АСИНХРОННОГО ДВИГАТЕЛЯ | 2010 |
|
RU2414806C1 |
Устройство для регулирования частоты вращения и крутящего момента асинхронного двигателя | 1982 |
|
SU1435164A3 |
US 6646409 B2, 11.11.2003 | |||
JP 4304183 A, 27.10.1992. |
Авторы
Даты
2020-06-17—Публикация
2019-09-05—Подача