Изобретение относится к области радиотехники и может быть использовано в качестве функционального узла активных RC-фильтров (ARCФ) ВЧ и СВЧ диапазонов, в т.ч. работающих при низких температурах и в условиях воздействия проникающей радиации.
Усилители тока (УТ) и так называемые токовые зеркала [1-21] начинают широко применяться в качестве активных элементов при построении СВЧ устройств частотной селекции [см., например, патент фирмы National Semiconductor (США) US 6606001, патентную заявку фирмы Qualcomm (США) US 2011/0090824 и др.]. Архитектуры ARCФ на усилителях тока оказываются более высокочастотными, чем традиционные ARCФ на усилителях напряжения. Это связано с тем, что такие структуры имеют при небольшом усилении по току (Ki=1-5) более широкий частотный диапазон.
Ближайшим прототипом (фиг. 1) заявляемого устройства является усилитель тока (токовое зеркало) в структуре СВЧ фильтра нижних частот по патентной заявке US 2011/0090824, fig.4a, 2011г. Он содержит токовый вход 1 устройства, согласованный с первой 2 шиной источника питания, инвертирующий токовый выход 3 устройства, согласованный с первой 2 шиной источника питания, первый 4 и второй 5 полевые транзисторы, затворы которых соединены друг с другом, а истоки объединены и согласованы со второй 6 шиной источника питания, неинвертирующий повторитель напряжения 7, вход которого 8 соединен с первым 1 токовым входом устройства и стоком первого 4 полевого транзистора, а выход 9 подключен к объединенным затворам первого 4 и второго 5 полевых транзисторов, причем сток второго 5 полевого транзисторы связан с инвертирующим токовым выходом 3 устройства.
Существенный недостаток известного усилителя тока состоит в том, что он оказывается неработоспособным при реализации на JFet полевых транзисторах, обеспечивающих экстремально малый уровень шумов, высокую радиационную стойкость и стабильную работу в диапазоне криогенных температур [22]. Это связано с несовпадающей полярностью напряжений затвор-исток и сток-исток полевых транзисторов данного класса. Кроме этого, известные схемы УТ имеют только инвертирующий токовый выход. В тоже время для многих задач аналого-цифрового усиления и фильтрации сигналов крайне необходимы сверхширокополосные усилители тока, имеющие также неинвертирующий токовый выход, для которого коэффициент передачи по входному току (Ki) лежит в диапазоне 1-5 единиц. Такие функциональные узлы позволяют создавать высококачественные СВЧ активные RC-фильтры, положительная обратная связь в которых замыкается через используемый усилитель тока с Ki=1-5.
Основная задача предполагаемого изобретения состоит в создании как инвертирующего, так и неинвертирующего широкополосного усилителя тока на комплементарных полевых транзисторах с управляющим pn-переходом для работы при низких температурах, обеспечивающего для разных выходов инвертирующее и неинвертирующее преобразования входного токового сигнала с коэффициентом передачи по току больше единицы (Ki=1-5).
Поставленная задача решается тем, что в усилителе тока фиг. 1, содержащем токовый вход 1 устройства, согласованный с первой 2 шиной источника питания, инвертирующий токовый выход 3 устройства, согласованный с первой 2 шиной источника питания, первый 4 и второй 5 полевые транзисторы, затворы которых соединены друг с другом, а истоки объединены и согласованы со второй 6 шиной источника питания, неинвертирующий повторитель напряжения 7, вход которого 8 соединен с первым 1 токовым входом устройства и стоком первого 4 полевого транзистора, а выход 9 подключен к объединенным затворам первого 4 и второго 5 полевых транзисторов, причем сток второго 5 полевого транзисторы связан с инвертирующим токовым выходом 3 устройства, предусмотрены новые элементы и связи – в качестве всех вышеназванных полевых транзисторов используются полевые транзисторы с управляющим p-n переходом, объединенные истоки первого 4 и второго 5 полевых транзисторов соединены с истоком первого 10 дополнительного полевого транзистора с управляющим p-n переходом, сток которого соединен с неинвертирующим токовым выходом устройства 11, а затвор связан с выходом 12 дополнительной цепи согласования потенциалов 13, причем вход 14 дополнительной цепи согласования потенциалов 13 связан с источником напряжения смещения 15.
На чертеже фиг. 1 представлена схема усилителя тока – прототипа в структуре СВЧ фильтра нижних частот.
На чертеже фиг. 2 приведена схема заявляемого устройства в соответствии с п.1и п.2 формулы изобретения.
На чертеже фиг. 3 показана схема заявляемого устройства в соответствии с п.3 формулы изобретения.
На чертеже фиг. 4 представлена схема заявляемого устройства в соответствии с п.4 формулы изобретения.
На чертеже фиг. 5 показан статический режим схемы УТ фиг. 2 c при t=27°C, I3=100 мкА для случая, когда в качестве источника напряжения смещения 15 (E0) используется напряжение на первой 2 шине источника питания.
На чертеже фиг. 6 представлены зависимости выходных токов УТ фиг. 5 от входного тока I3 при t=27°C.
На чертеже фиг. 7 приведен статический режим схемы УТ фиг. 2 c при t=-197°C, I3=100 мкА для случая, когда в качестве источника напряжения смещения 15 (E0) используется напряжение на первой 2 шине источника питания.
На чертеже фиг. 8 показаны зависимости выходных токов УТ фиг. 7 от входного тока I3 при t=-197°C.
На чертеже фиг. 9 представлен статический режим схемы УТ фиг. 2 c при t=27°C, I3=100 мкА для случая, когда в качестве источника напряжения смещения 15 (E0) используется напряжение на общей шине источников питания.
На чертеже фиг. 10 приведены зависимости выходных токов УТ фиг. 9 от входного тока I3 при t=27°C.
На чертеже фиг. 11 показан статический режим схемы УТ фиг. 2 c при t=-197°C, I3=100 мкА для случая, когда в качестве источника напряжения смещения 15 (E0) используется напряжение на общей шине источников питания.
На чертеже фиг. 12 представлены зависимости выходных токов УТ фиг. 11 от входного тока I3 при t=-197°C.
Низкотемпературный усилитель тока для задач проектирования активных RC-фильтров фиг. 2 содержит токовый вход 1 устройства, согласованный с первой 2 шиной источника питания, инвертирующий токовый выход 3 устройства, согласованный с первой 2 шиной источника питания, первый 4 и второй 5 полевые транзисторы, затворы которых соединены друг с другом, а истоки объединены и согласованы со второй 6 шиной источника питания, неинвертирующий повторитель напряжения 7, вход которого 8 соединен с первым 1 токовым входом устройства и стоком первого 4 полевого транзистора, а выход 9 подключен к объединенным затворам первого 4 и второго 5 полевых транзисторов, причем сток второго 5 полевого транзисторы связан с инвертирующим токовым выходом 3 устройства. В качестве всех вышеназванных полевых транзисторов используются полевые транзисторы с управляющим p-n переходом, объединенные истоки первого 4 и второго 5 полевых транзисторов соединены с истоком первого 10 дополнительного полевого транзистора с управляющим p-n переходом, сток которого соединен с неинвертирующим токовым выходом устройства 11, а затвор связан с выходом 12 дополнительной цепи согласования потенциалов 13, причем вход 14 дополнительной цепи согласования потенциалов 13 связан с источником напряжения смещения 15.
На чертеже фиг. 2, в соответствии с п. 2 формулы изобретения, цепь согласования потенциалов 13 содержит первый 16 вспомогательный полевой транзистор с управляющим p-n переходом, затвор которого соединен со входом 14 дополнительной цепи согласования потенциалов 13, сток подключен ко второй 6 шине источника питания, а исток соединен с выходом 12 дополнительной цепи согласования потенциалов 13 и через первый 17 вспомогательный двухполюсник связан с первой 2 шиной источника питания.
Кроме этого, в схеме фиг. 2 двухполюсники 18 и 19 моделируют свойства нагрузки, подключаемой к инвертирующему токовому выходу 3 и неинвертирующему токовому выходу 11.
В частном случае, на чертеже фиг. 2 неинвертирующий повторитель напряжения 7 реализован, так же как и в УТ-прототипе фиг. 1, на полевом транзисторе 20, статический режим которого устанавливается двухполюсником 21. Кроме этого, данный неинвертирующий повторитель напряжения 7 содержит частотозадающие элементы 22, 23 и 24, которые обеспечивают формирование на базе схемы фиг. 2 амплитудно-частотные характеристики фильтра нижних частот.
На чертеже фиг. 3, в соответствии с п. 3 формулы изобретения, в качестве второго 5 полевого транзистора с управляющим p-n переходом используется составной полевой транзистор, содержащий N элементарных полевых транзисторов с управляющим p-n переходом (5.1…5.N), включенных параллельно друг другу по цепям затвора, стока и истока.
На чертеже фиг. 4, в соответствии с п. 4 формулы изобретения, в схему введен второй 20 дополнительный полевой транзистор с управляющим p-n переходом, затвор которого соединен с затвором первого 10 дополнительного полевого транзистора, исток соединен с истоком первого 10 дополнительного полевого транзистора, а сток подключен ко второй 6 шине источника питания. Такое схемотехническое решение рекомендуется для случая, когда необходимо получить предельно широкий диапазон рабочих частот УТ.
Рассмотрим работу заявляемого УТ на примере анализа схемы фиг. 3.
Приращение входного тока УТ на величину iвх приводит к изменению потенциала на входе 8 неинвертирующего повторителя напряжения 7, которое передается на затворы первого 4 и второго 5 полевых транзисторов. Как следствие, ток стока первого 4 полевого транзистора ic4=iвх. Учитывая, что первый 4 и второй 5 полевые транзисторы включены параллельно, и они имеют высокую идентичность стоко-затворных характеристик, это приводит к изменению тока стока второго 5 полевого транзистора на величину iвх. Так как в соответствии с п. 3 формулы изобретения, второй 5 полевой транзистор может выполняться в виде нескольких (N) параллельно включенных полевых транзисторов, ток по инвертирующему выходу 3 принимает значение N⋅iвх. Этой же величине будет равна и сумма токов истоков транзисторов 5.1 … 5.N. В результате ток истока первого 10 дополнительного полевого транзистора с управляющим p-n переходом и, следовательно, выходной ток УТ по неинвертирующему токовому выходу 11, принимает значение (1+N)iвх. Таким образом, коэффициент усиления по току Ki для неинвертирующего токового выхода 11 определяется числом N параллельно включенных элементарных транзисторов в структуре второго 5 полевого составного транзистора: Ki=(1+N).
Необходимый статический режим схемы УТ фиг. 3 по напряжениям в ее базовых узлах устанавливается цепью согласования потенциалов 13, а при необходимости - дополнительным источником напряжения 15. В частных случаях в качестве дополнительного источника Е0 может использоваться напряжение на первой 2 шине источника питания или напряжение на общей шине источников питания 2 и 6.
Таким образом, схема УТ фиг. 3 по неинвертирующему токовому выходу 11 обеспечивает широкополосное неинвертирующее усиление входного тока с Ki=(1+N). Это позволяет выполнять на ее основе разнообразные СВЧ устройства частотной селекции с цепью положительной обратной связи. Кроме этого, схема фиг. 3 имеет также инвертирующий токовый выход 3, по которому усиление по току равно Ki=N.
В ряде случаев непосредственное формирование селективных свойств рассматриваемого усилителя тока, например, как фильтра нижних частот, возможно за счет включения в структуру неинвертирующего повторителя напряжения 7 дополнительных частотозадающих реактивных элементов (как это сделано в патенте фирмы National Semiconductor (США) US 6606001 и патентной заявке фирмы Qualcomm (США) US 2011/0090824). На схемах фиг. 2 и фиг. 3 это дополнительные конденсаторы 22, 23 и резистор 24, а также второй 20 дополнительный полевой транзистор с управляющим
p-n переходом, статический режим которого устанавливается двухполюсником 21.
В тех случаях, когда по условиям применения заявляемого УТ необходимо иметь идентичные коэффициенты передачи по инвертирующему 3 и неинвертирующему 11 токовым выходам, следует применять схему УТ фиг. 4, в которой за счет второго 20 дополнительного полевого транзистора с управляющим p-n переходом обеспечивается равенство iвых.2=iвх.
Таким образом, заявляемый усилитель тока имеет существенные преимущества в сравнении с УТ-прототипом и может использоваться в СВЧ устройствах частотной селекции, в т.ч. работающих в диапазоне криогенных температур и воздействии проникающей радиации , благодаря использованию JFET транзисторов [22].
Библиографический СПИСОК
1. Патент US № 6.630.818, fig. 4, 2003 г.
2. Патент EP № 2652872, fig. 2, 2015 г.
3. Патент US № 7.869.285, fig. 1, 2011 г.
4. Патент US № 7.312.651, 2007 г.
5. Патент RU № 2544780, fig. 2, 2013 г.
6. Патент US № 8.169.263, 2012 г.
7. Патент US № 7.915.948, 2011 г.
8. Патент US № 6.492.796, fig. 1, fig. 2, fig. 8, 2002 г.
9. Патент US № 7.541.871, fig. 1, 2009 г.
10. Патент US № 5.801.523, fig. 1, 1998 г.
11. Патент US № 6.617.915, 2003 г.
12. Заявка на патент US № 2007/0216484, fig. 15, 2007 г.
13. Патент US № 6.639.452, fig. 1, 2003 г.
14. Патент US № 5.515.010, 1996 г.
15. Заявка на патент US № 2006/0232340, 2006 г.
16. Патент EP № 1313211, fig. 3, 2001 г.
17. Патент US № 6.842.050, fig. 3, 2005 г.
18. Патент US № 6.980.054, fig. 7, 2005 г.
19. Авт. свид. SU 1529410, 1989 г.
20. Полезная модель RU 139042, 2014 г.
21. Токовые зеркала для проектирования КМОП аналоговых микросхем: основные модификации (ТЗ №1-№ 36) / Прокопенко Н.Н., Титов А.Е., Бутырлагин Н.В. // Библиотека схемотехнических решений. ИППМ РАН, 2019, С. 1-29. URL: http://www.ippm.ru/data/eljrnal/paper/J4.pdf (режим доступа свободный)
22. O. V. Dvornikov, V. L. Dziatlau, N. N. Prokopenko, K. O. Petrosiants, N. V. Kozhukhov and V. A. Tchekhovski, "The accounting of the simultaneous exposure of the low temperatures and the penetrating radiation at the circuit simulation of the BiJFET analog interfaces of the sensors," 2017 International Siberian Conference on Control and Communications (SIBCON), Astana, 2017, pp. 1-6. DOI: 10.1109/SIBCON.2017.7998507.
название | год | авторы | номер документа |
---|---|---|---|
НИЗКОТЕМПЕРАТУРНЫЙ И РАДИАЦИОННО-СТОЙКИЙ КОМПЕНСАЦИОННЫЙ СТАБИЛИЗАТОР НАПРЯЖЕНИЯ НА КОМПЛЕМЕНТАРНЫХ ПОЛЕВЫХ ТРАНЗИСТОРАХ С УПРАВЛЯЮЩИМ P-N ПЕРЕХОДОМ | 2020 |
|
RU2732950C1 |
КОМПЕНСАЦИОННЫЙ СТАБИЛИЗАТОР НАПРЯЖЕНИЯ НА ПОЛЕВЫХ ТРАНЗИСТОРАХ ДЛЯ РАБОТЫ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ | 2020 |
|
RU2736548C1 |
НЕИНВЕРТИРУЮЩИЙ УСИЛИТЕЛЬ ТОКА КЛАССА "АВ" | 2022 |
|
RU2783042C1 |
ТОКОВОЕ ЗЕРКАЛО ДЛЯ РАБОТЫ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ | 2019 |
|
RU2720365C1 |
ДИФФЕРЕНЦИАЛЬНЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ С ПАССИВНЫМ ПАРАЛЛЕЛЬНЫМ КАНАЛОМ | 2012 |
|
RU2517699C1 |
Буферный усилитель для работы при низких температурах | 2018 |
|
RU2687161C1 |
РАДИАЦИОННО-СТОЙКИЙ И НИЗКОТЕМПЕРАТУРНЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ НА КОМПЛЕМЕНТАРНЫХ ПОЛЕВЫХ ТРАНЗИСТОРАХ | 2020 |
|
RU2741056C1 |
ДИФФЕРЕНЦИАЛЬНЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ С МАЛЫМ НАПРЯЖЕНИЕМ ПИТАНИЯ | 2015 |
|
RU2613842C1 |
Арсенид-галлиевый операционный усилитель с повышенным коэффициентом усиления и малым уровнем систематической составляющей напряжения смещения нуля | 2023 |
|
RU2820562C1 |
Арсенид-галлиевый операционный усилитель | 2023 |
|
RU2813140C1 |
Изобретение относится к области радиотехники. Технический результат: создание как инвертирующего, так и неинвертирующего широкополосного усилителя тока на комплементарных полевых транзисторах с управляющим p-n переходом для работы при низких температурах, обеспечивающего для разных выходов инвертирующее и неинвертирующее преобразования входного токового сигнала с коэффициентом передачи по току больше единицы (Ki=1-5). Для этого предложен низкотемпературный усилитель тока для задач проектирования активных RC-фильтров, в котором в качестве всех полевых транзисторов используются полевые транзисторы с управляющим p-n переходом, объединенные истоки первого (4) и второго (5) полевых транзисторов соединены с истоком первого (10) дополнительного полевого транзистора с управляющим p-n переходом, сток которого соединен с неинвертирующим токовым выходом устройства (11), а затвор связан с выходом (12) дополнительной цепи согласования потенциалов (13), причем вход (14) дополнительной цепи согласования потенциалов (13) связан с источником напряжения смещения (15). 3 з.п. ф-лы, 12 ил.
1. Низкотемпературный усилитель тока для задач проектирования активных RC-фильтров, содержащий токовый вход (1) устройства, согласованный с первой (2) шиной источника питания, инвертирующий токовый выход (3) устройства, согласованный с первой (2) шиной источника питания, первый (4) и второй (5) полевые транзисторы, затворы которых соединены друг с другом, а истоки объединены и согласованы со второй (6) шиной источника питания, неинвертирующий повторитель напряжения (7), вход которого (8) соединен с первым (1) токовым входом устройства и стоком первого (4) полевого транзистора, а выход (9) подключен к объединенным затворам первого (4) и второго (5) полевых транзисторов, причем сток второго (5) полевого транзистора связан с инвертирующим токовым выходом (3) устройства, отличающийся тем, что в качестве всех вышеназванных полевых транзисторов используются полевые транзисторы с управляющим p-n переходом, объединенные истоки первого (4) и второго (5) полевых транзисторов соединены с истоком первого (10) дополнительного полевого транзистора с управляющим p-n переходом, сток которого соединен с неинвертирующим токовым выходом устройства (11), а затвор связан с выходом (12) дополнительной цепи согласования потенциалов (13), причем вход (14) дополнительной цепи согласования потенциалов (13) связан с источником напряжения смещения (15).
2. Низкотемпературный усилитель тока для задач проектирования активных RC-фильтров по п. 1, отличающийся тем, что цепь согласования потенциалов (13) содержит первый (16) вспомогательный полевой транзистор с управляющим p-n переходом, затвор которого соединен со входом (14) дополнительной цепи согласования потенциалов (13), сток подключен ко второй (6) шине источника питания, а исток соединен с выходом (12) дополнительной цепи согласования потенциалов (13) и через первый (17) вспомогательный двухполюсник связан с первой (2) шиной источника питания.
3. Низкотемпературный усилитель тока для задач проектирования активных RC-фильтров по пп. 1 и 2, отличающийся тем, что в качестве второго (5) полевого транзистора с управляющим p-n переходом используется составной полевой транзистор, содержащий N элементарных полевых транзисторов с управляющим p-n переходом, включенных параллельно друг другу по цепям затвора, стока и истока.
4. Низкотемпературный усилитель тока для задач проектирования активных RC-фильтров по п. 1, отличающийся тем, что в схему введен второй (20) дополнительный полевой транзистор с управляющим p-n переходом, затвор которого соединен с затвором первого (10) дополнительного полевого транзистора, исток соединен с истоком первого (10) дополнительного полевого транзистора, а сток подключен ко второй (6) шине источника питания.
Способ приготовления лака | 1924 |
|
SU2011A1 |
ИЗБИРАТЕЛЬНЫЙ УСИЛИТЕЛЬ | 2011 |
|
RU2467469C1 |
ДВУХКАНАЛЬНЫЙ УПРАВЛЯЕМЫЙ УСИЛИТЕЛЬ ПЕРЕМЕННОГО ТОКА | 2009 |
|
RU2394364C1 |
US 4709217 A1, 24.11.1987. |
Авторы
Даты
2020-07-28—Публикация
2020-02-03—Подача