СПОСОБ ПОЛУЧЕНИЯ СУБМИКРОННЫХ КРИСТАЛЛОВ НИТРИДА АЛЮМИНИЯ Российский патент 2020 года по МПК C30B23/00 C30B29/38 C30B29/40 C30B29/66 C01B21/72 B82B3/00 B82Y40/00 B82Y20/00 B82Y5/00 

Описание патента на изобретение RU2738328C2

Изобретение относится к химической технологии получения соединений алюминия, а именно к технологии получения субмикронных кристаллов нитрида алюминия в форме гексагональных призм и в форме комбинации гексагональной призмы с дипирамидой и пинакоидом, имеющих одинаковый фракционный размер от 70 нм до 1 мкм. Изобретение может быть использовано при разработке нано-, микро- и оптоэлектронных устройств, подложек и элементов, включая элементы нано-оптоэлектроники и люминесцентно-активные микроразмерные сенсоры медико-биологического назначения.

Нитрид алюминия AlN является перспективным материалом для создания мощных светоизлучающих и лазерных устройств в УФ и видимой области спектра благодаря широкой запрещенной зоне 6.2 эВ, высокой теплопроводности и электроизоляционным свойствам (Т. Я. Косолапова, Т. В. Андреева, Т. Б. Бартницкая и др. Неметаллические тугоплавкие соединения. М. Металлургия, 1985, − 224 с.). Однако, как правило, частицы коммерческих порошков AlN имеют размеры, превышающие 1 мкм.

Известен способ выращивания объемных монокристаллов нитрида алюминия из смеси азота и паров алюминия, включающий размещение в ростовой камере друг напротив друга подложки и источника паров алюминия, нагрев и поддержание рабочих температур источника и подложки, обеспечивающих соответственно образование паров алюминия в составе смеси, и рост монокристалла нитрида алюминия на подложке (патент РФ №2330905, МПК С30В 23/00, опубл. 10.08.08. Бюл. №22). В известном способе для очищения подложки и источника паров алюминия от летучих примесей предварительно осуществляют нагрев подложки до температуры 1500 − 1700°С при давлении не выше 10-3 мм рт.ст. Затем для подавления излишнего испарения и исключения возможности роста поликристаллов в ростовую камеру напускают азот до давления 0.9 – 1 атм, после чего продолжают нагрев до рабочей температуры. Однако известный способ не позволяет получать кристаллы AlN размером менее 1 мкм.

Разработан способ получения монокристаллов AlN путем газофазной эпитаксии из смеси, содержащей источники AlN и NH3, включающий размещение в ростовой камере друг напротив друга источника Al и обращенной к нему ростовой поверхностью подложки, образующих ростовую зону, создание в ростовой зоне потока NH3, нагрев источника Al и подложки до температур, обеспечивающих рост монокристалла AlN на подложке (патент РФ №2468121, МПК С30В 23/00, опубл. 27.11.12. Бюл. №33). В качестве источника Al используют только свободный Al, подложку предварительно обрабатывают Ga и/или In, после чего охлаждают источник Al до температуры 800 − 900°С и осуществляют отжиг подложки путем нагрева ее до температуры 1300 − 1400°С с последующим ее охлаждением до температуры нитридизации ее ростовой поверхности; после охлаждения подложки в ростовую зону подают NH3 в течение 8 − 15 минут, а затем повышают температуру источника Al и вместе с NH3 подают в ростовую зону пары Al; монокристалл AlN на начальном этапе роста до достижения толщины 1 − 10 мкм выращивают со скоростью не более 10 мкм/час, а затем увеличивают скорость роста до 100 − 200 мкм/час. Однако описанный способ не позволяет получать субмикронные кристаллы AlN и требует для своего осуществления дорогостоящего вакуумного оборудования.

Монокристаллический нитрид алюминия может быть получен выращиванием монокристалла AlN на затравочном кристалле с использованием устройства для производства монокристаллического AlN, содержащего тигель, причем тигель содержит внутренний тигель и внешний тигель; внутренний содержит исходный AlN и затравочный кристалл, указанные исходный AlN и затравочный кристалл расположены внутри внутреннего тигля таким образом, чтобы находится напротив друг друга; внутренний тигель содержит единый корпус из металла, имеющего ионный радиус, превышающий ионный радиус Al, или содержит нитрид металла; внешний тигель содержит нитрид бора, и внешний тигель также покрывает внутренний тигель, причем способ включает: стадию заполнения внутренней части тигля атмосферой газообразного азота, а также стадии нагрева тигля и уменьшения давления внутри внутреннего тигля (патент РФ №2485219, МПК С30В 23/00, опубл. 20.06.13. Бюл. №17). Однако реализация способа требует значительного времени из-за использования множества различных исходных материалов.

Существует способ производства нитрида алюминия в виде нитевидных кристаллических волокон со средним диаметром менее 100 нм и с соотношением длины волокна к диаметру более 100, включающий взаимодействие нагретого алюминия с азотом и галогенидами алюминия (III), скорость подачи которых находится на уровне 0.1 − 6.0 см3/мин на каждый 1 см2 поверхности конденсации, весь процесс синтеза ведут в реакционной камере, куда в процессе синтеза нитевидных волокон AlN поступают реагенты в результате испарения порошка тригалогенида алюминия из находящегося внутри реакционной камеры внешнего тигля, а конденсацию ведут на поверхности жидкого Al, находящегося в малом внутреннем тигле, который в свою очередь находится внутри внешнего тигля в той же реакционной камере. Реакционная камера во время процесса синтеза заполняется азотсодержащим газом, подаваемым в необходимом количестве в область над жидким Al (патент РФ №2617495, МПК С30В 23/00, опубл. 25.04.17. Бюл. №12). Недостатком получаемых волокон по известному способу является их малый диаметр (менее 100 нм), что ограничивает возможности их применения в качестве подложек для микро- и оптоэлектроники.

Наиболее близким к заявляемому является способ получения микрокристаллов нитрида алюминия правильной гексагональной формы из смеси газа и паров алюминия, включающий размещение нанопорошка Al между полюсами постоянного магнита и его нагрев в режиме теплового взрыва. Процесс осуществляют в атмосфере воздуха при давлении 1 атм и магнитном поле напряженностью 1500 эрстед (патент РФ №2437968, МПК С30В 23/00, опубл. 27.12.11. Бюл. №36). Данный способ позволяет получить кристаллы AlN преимущественно микронного размера. Другим недостатком является необходимость использовать нанопорошок Al в качестве источника Al и дополнительно прикладывать магнитное поле для получения кристаллов правильной гексагональной формы, что приводит к высокой стоимости синтезированных образцов AlN, полученных данным способом.

Технической проблемой является создание способа, возможности/характеристики которого удовлетворяют требованиям снижения размеров кристаллов нитрида алюминия, имеющих, во-первых, близкий к одинаковому фракционный размер, и во-вторых, имеющих размер существенно не превышающий 1 мкм.

Решение данной проблемы обеспечивается при осуществлении способа, включающего взаимодействие паров алюминия с трифторидом алюминия и аммиаком и последующую конденсацию конечно продукта. Внутри реакционной камеры смешивали гранулы металлического алюминия с порошком трифторида алюминия в соотношении 1:1 − 3:1 и нагревали до температуры 1050 − 1150ºС достаточной для образования паров субфторида алюминия. Во внутреннее пространство реакционной камеры в область над жидким алюминием подавали аммиак с объемной скорость подачи ниже 50 мл/мин при абсолютном давлении 0.03 – 0.07 МПа. При большей скорости подачи возможно удаление газообразных реагентов из зоны реакции. Конденсацию конечного продукта вели на поверхности жидкого алюминия и стенках реакционной камеры.

Суть метода заключается в следующем: расплавленный Al взаимодействует с парами AlF3 с образованием газообразного AlF по реакции:

2Alжид. + AlF3газ. = 3AlFгаз.

В газовой фазе AlF реагирует с NH3 и в результате образуются зародыши твердой фазы AlN. Продуктом реакции также является H2, поток которого поддерживает зародыши в газовом объеме.

3AlFгаз. + 2NH3газ. = 2AlNтв. + 3H2газ. + AlF3газ.

В процессе синтеза зародыши увеличиваются и осаждаются, а затем из них формируются субмикронные кристаллы AlN в форме гексагональных призм, а также в форме комбинации гексагональной призмы с дипирамидой и пинакоидом с характерными размерами от 70 нм до 1 мкм (фиг. 1). Образующийся также AlF3 может повторно вступать в реакцию с Al.

Способ иллюстрируется следующими примерами выполнения.

Пример 1. Способ получения субмикронных кристаллов нитрида алюминия

Исходные гранулы металлического Al смешивают с порошком AlF3 в тигле в соотношении 1:1 и испаряют в реакционной камере при температуре 1050°С. В пространство над тиглем подают NH3 с объемной скоростью ниже 50 мл/мин при абсолютном давлении 0.03 МПа. Продолжительность процесса синтеза составляла 4.5 часа. За это время на стенках тигля и поверхности жидкого Al образовался белый порошок из микрочастиц кристаллического AlN. Анализ снимков, полученных с помощью растрового электронного микроскопа Sigma VP Carl Zeiss, показал, что AlN представляет собой кристаллы в виде гексагональных призм правильной геометрической формы и комбинации гексагональной призмы с дипирамидой и пинакоидом, имеющие фракционный размер от 70 нм до 1 мкм (фиг. 2) По результатам химического анализа с использованием энергодисперсионного детектора X-max Oxford Instruments определено, что микрочастицы имеют нестехиометрию по Al с соотношением Al:N = 0.9:1. Основными примесями являются O (1.6 ат. %) и Si (0.5 ат. %). С помощью рентгенофазового анализа на дифрактометре X'PertPro MPD PANalytical установлено, что продуктом синтеза является гексагональный нитрид алюминия.

Пример 2. Способ получения субмикронных кристаллов нитрида алюминия

Исходные гранулы металлического Al смешивают с порошком AlF3 в тигле в соотношении 3:1 и испаряют в реакционной камере при температуре 1150°С. В пространство над тиглем подают NH3 с объемной скоростью ниже 50 мл/мин при абсолютном давлении 0.07 МПа. Продолжительность процесса синтеза составляла 4.5 часа. За это время на стенках тигля и поверхности жидкого Al образовался белый порошок из микрочастиц кристаллического AlN. РЭМ-снимки этих кристаллов приведены на фиг. 3. Как видно из фиг. 3, AlN имеет вюрцитную гексагональную структуру с преимущественным размером фракции в диапазоне 0.1 – 0.6 мкм. Рентгенофазовый анализ конечного продукта показал, что синтезированный субмикронный порошок состоит из кристаллов гексагонального AlN.

Техническим результатом является расширение арсенала известных технологий получения нитрида алюминия путем создания дополнительного способа получения субмикронных гексагональных кристаллов нитрида алюминия с одинаковым фракционным размером от 70 нм до 1 мкм.

Похожие патенты RU2738328C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ НИТЕВИДНОГО НИТРИДА АЛЮМИНИЯ 2016
  • Афонин Юрий Дмитриевич
  • Чайкин Дмитрий Витальевич
  • Кожевникова Анна Петровна
  • Вохминцев Александр Сергеевич
  • Вайнштейн Илья Александрович
  • Шульгин Борис Владимирович
RU2617495C1
СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛА AlN И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2011
  • Погорельский Михаил Юрьевич
  • Шкурко Алексей Петрович
  • Алексеев Алексей Николаевич
  • Чалый Виктор Петрович
RU2468128C1
ПОДЛОЖКА ДЛЯ ВЫРАЩИВАНИЯ ЭПИТАКСИАЛЬНЫХ СЛОЕВ НИТРИДА ГАЛЛИЯ 2007
  • Айтхожин Сабир Абенович
RU2369669C2
СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛИЧЕСКОГО НИТРИДА АЛЮМИНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2005
  • Авдеев Олег Валерьевич
  • Базаревский Денис Станиславович
  • Макаров Юрий Николаевич
  • Савченко Юрий Иванович
  • Сегаль Александр Соломонович
  • Смирнов Сергей Александрович
  • Чемекова Татьяна Юрьевна
RU2330904C2
СПОСОБ ПОЛУЧЕНИЯ ПЛЕНКИ НИТРИДА АЛЮМИНИЯ НА САПФИРОВОЙ ПОДЛОЖКЕ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Билалов Билал Аругович
  • Гитикчиев Магомед Ахмедович
  • Сафаралиев Гаджимет Керимович
RU2388107C1
СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛОВ GaN ИЛИ AlGaN 2005
  • Дадгар Армин
  • Крост Алоис
RU2446236C2
СПОСОБ И УСТРОЙСТВО ДЛЯ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ПОЛУПРОВОДНИКОВЫХ СОЕДИНЕНИЙ II-VI И ПОЛУПРОВОДНИКИ, ПОДВЕРГШИЕСЯ ТЕРМИЧЕСКОЙ ОБРАБОТКЕ С ПОМОЩЬЮ ЭТОГО СПОСОБА 2002
  • Намикава Ясуо
RU2238603C2
СПОСОБ ПОЛУЧЕНИЯ МОНОКРИСТАЛЛИЧЕСКОГО SiC 2010
  • Авров Дмитрий Дмитриевич
  • Дорожкин Сергей Иванович
  • Лебедев Андрей Олегович
  • Лучинин Виктор Викторович
  • Посредник Олеся Валерьевна
  • Таиров Юрий Михайлович
  • Фадеев Алексей Юрьевич
RU2454491C2
СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ ЛАНТАНГАЛЛИЕВОГО СИЛИКАТА МЕТОДОМ ЧОХРАЛЬСКОГО 1999
  • Дороговин Б.А.
  • Степанов С.Ю.
  • Цеглеев А.А.
  • Лаптева Г.А.
  • Дубовский А.Б.
  • Горохов В.П.
  • Царева Н.Б.
  • Курочкин В.И.
  • Миронова В.В.
  • Филиппов И.М.
RU2143015C1
СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛИЧЕСКОГО НИТРИДА АЛЮМИНИЯ 2005
  • Авдеев Олег Валерьевич
  • Базаревский Денис Станиславович
  • Макаров Юрий Николаевич
  • Савченко Юрий Иванович
  • Сегаль Александр Соломонович
  • Смирнов Сергей Александрович
  • Чемекова Татьяна Юрьевна
RU2330905C2

Иллюстрации к изобретению RU 2 738 328 C2

Реферат патента 2020 года СПОСОБ ПОЛУЧЕНИЯ СУБМИКРОННЫХ КРИСТАЛЛОВ НИТРИДА АЛЮМИНИЯ

Изобретение относится к химической технологии субмикронных кристаллов нитрида алюминия в форме гексагональных призм и комбинации гексагональной призмы с дипирамидой и пинакоидом, которое может быть использовано при создании элементов нано-, микро- и оптоэлектроники, а также люминесцентно-активных микроразмерных сенсоров медико-биологического назначения. Гранулы металлического алюминия смешивают с порошком трифторида алюминия в соотношении 1:1 − 3:1 и нагревают смесь до температуры образования паров субфторида алюминия, равной 1050 − 1150°С, в атмосфере аммиака, подаваемого в пространство над жидким алюминием с объемной скоростью подачи ниже 50 мл/мин при абсолютном давлении 0,03 – 0,07 МПа. Технический результат состоит в получении кристаллов нитрида алюминия с одинаковым фракционным размером от 70 нм до 1 мкм. 3 ил., 2 пр.

Формула изобретения RU 2 738 328 C2

Способ получения субмикронных кристаллов нитрида алюминия, включающий взаимодействие паров алюминия с азотсодержащим газом, отличающийся тем, что гранулы металлического алюминия смешивают с порошком трифторида алюминия в соотношении 1:1 − 3:1 и нагревают смесь до температуры 1050 − 1150°С в атмосфере аммиака, подаваемого в пространство над жидким алюминием с объемной скоростью подачи ниже 50 мл/мин при абсолютном давлении 0,03 – 0,07 МПа.

Документы, цитированные в отчете о поиске Патент 2020 года RU2738328C2

СПОСОБ ПОЛУЧЕНИЯ МИКРОКРИСТАЛЛОВ НИТРИДА АЛЮМИНИЯ 2010
  • Ильин Александр Петрович
  • Мостовщиков Андрей Владимирович
  • Коршунов Андрей Владимирович
  • Толбанова Людмила Олеговна
RU2437968C1
СПОСОБ ПОЛУЧЕНИЯ НИТРИДА АЛЮМИНИЯ 1995
  • Афонин Ю.Д.
  • Бекетов А.Р.
  • Проскуряков Л.Д.
  • Жукова Л.М.
  • Рябов В.П.
RU2074109C1
СПОСОБ ПОЛУЧЕНИЯ НИТЕВИДНОГО НИТРИДА АЛЮМИНИЯ 2016
  • Афонин Юрий Дмитриевич
  • Чайкин Дмитрий Витальевич
  • Кожевникова Анна Петровна
  • Вохминцев Александр Сергеевич
  • Вайнштейн Илья Александрович
  • Шульгин Борис Владимирович
RU2617495C1
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА НИТРИДА АЛЮМИНИЯ 2005
  • Афонин Юрий Дмитриевич
  • Бекетов Аскольд Рафаилович
  • Бекетов Дмитрий Аскольдович
  • Черный Никита Львович
RU2312060C2
GLEN A.SLACK et al, Growth of high purity AlN crystals, "Journal of Crystal Growth", 1976, Vol.34, No.2, pp 263-279.

RU 2 738 328 C2

Авторы

Афонин Юрий Дмитриевич

Чайкин Дмитрий Витальевич

Вохминцев Александр Сергеевич

Вайнштейн Илья Александрович

Шульгин Борис Владимирович

Даты

2020-12-11Публикация

2019-04-22Подача