Изобретение относится к вычислительной технике и может быть использовано для построения средств автоматики, функциональных узлов систем управления и др.
Известны логические модули (см., например, патент РФ 2472209, кл. G06F7/57, 2013 г.), которые с помощью константной настройки реализуют любую из простых симметричных булевых функций τ1, τ2, τ0,5×(n+1),τn-1, τn, зависящих от n аргументов - входных двоичных сигналов, при n=5.
К причине, препятствующей достижению указанного ниже технического результата при использовании известных логических модулей, относятся ограниченные функциональные возможности, обусловленные тем, что не обеспечивается реализация любой из функций τ1, τ2, τ0,5×(n+1),τn-1, τn, при n=7.
Наиболее близким устройством того же назначения к заявленному изобретению по совокупности признаков является принятый за прототип логический модуль (патент РФ 2621376, кл. G06F7/57, 2017 г.), который содержит элементы И, элементы ИЛИ, мажоритарные элементы и с помощью константной настройки реализует любую из простых симметричных булевых функций τ1, τ2, τ0,5×(n+1),τn-1, τn, зависящих от n аргументов - входных двоичных сигналов, при n=5.
К причине, препятствующей достижению указанного ниже технического результата при использовании прототипа, относятся ограниченные функциональные возможности, обусловленные тем, что не обеспечивается реализация любой из функций τ1, τ2, τ0,5×(n+1),τn-1, τn, при n=7.
Техническим результатом изобретения является расширение функциональных возможностей за счет обеспечения реализации с помощью константной настройки любой из простых симметричных булевых функций τ1, τ2, τ0,5×(n+1),τn-1, τn, зависящих от n аргументов - входных двоичных сигналов, при n=7.
Указанный технический результат при осуществлении изобретения достигается тем, что в логическом модуле, содержащем два элемента И, два элемента ИЛИ и четыре мажоритарных элемента, первый, второй входы j-го элемента И, третий вход и выход третьего мажоритарного элемента соединены соответственно с первым, вторым входами j-го элемента ИЛИ, выходом второго и вторым входом четвертого мажоритарных элементов, а первый, второй входы первого элемента И подключены соответственно к первому, второму информационным входам логического модуля, особенность заключается в том, что в него дополнительно введены шесть мажоритарных элементов, первый, второй и третий входы j-го мажоритарного элемента соединены соответственно с первым, вторым входами j-го элемента И и третьими входами j-ых элементов И, ИЛИ, выходы (j+3)-го, i-го мажоритарных элементов и выход j-го элемента И подключены соответственно к вторым входам (j+4)-го, (i+1)-го и (4×j-1)-го мажоритарных элементов, третьи входы пятого, шестого, седьмого, девятого мажоритарных элементов и выход j-го элемента ИЛИ соединены соответственно с выходами восьмого, десятого, первого, четвертого и третьим входом (4×j)-го мажоритарных элементов, а объединенные первые входы третьего, седьмого, объединенные первые входы четвертого, шестого, восьмого, девятого, объединенные первые входы пятого, десятого и выход шестого мажоритарных элементов образуют соответственно первый, второй, третий настроечные входы и выход логического модуля, третий, (i-3)-й и седьмой информационные входы которого подключены соответственно к третьему входу первого элемента И, (i-6)-му входу второго и третьему входу десятого мажоритарных элементов.
На чертеже представлена схема предлагаемого логического модуля. Логический модуль содержит элементы И 11, 12, элементы ИЛИ 21, 22 и мажоритарные элементы 31, …,310, причем k-й вход элемента 3j и выходы элементов 1j, 3k+2, 3k+6 соединены соответственно с k-ми входами элементов 1j, 2j и вторыми входами элементов 34×j-1, 3k+3, 3k+7, выходы элементов 3j, 2j и третьи входы элементов 35, 36, 39 подключены соответственно к третьим входам элементов 311-4×j, 34×j и выходам элементов 38, 310, 34, а объединенные первые входы элементов 33, 37, объединенные первые входы элементов 34, 36, 38, 39, объединенные первые входы элементов 35, 310 и выход элемента 36 образуют соответственно первый, второй, третий настроечные входы и выход логического модуля, k-й, (k+3)-й и седьмой информационные входы которого соединены соответственно с k-ми входами элементов 11, 32 и третьим входом элемента 310.
Работа предлагаемого логического модуля осуществляется следующим образом. На его первом, втором, третьем настроечных входах фиксируются соответственно необходимые сигналы у],у2,,y3∈{0,1} константной настройки. На его первый, …,седьмой информационные входы подаются соответственно двоичные сигналы x1, …, x7∈{0,1}. На выходе элемента 3m имеем есть соответственно сигналы на первом, втором, третьем входах этого элемента и символы операций ИЛИ, И. Следовательно, сигнал на выходе элемента 36 определяется выражением
в котором Таким образом, на выходе предлагаемого логического модуля получим
где τ1,τ2,τ4,τ6,τ7 есть простые симметричные булевы функции семи аргументов x1, …, x7 (см. стр. 126 в книге Поспелов Д.А. Логические методы анализа и синтеза схем. М.: Энергия, 1974 г. ).
Вышеизложенные сведения позволяют сделать вывод, что предлагаемый логический модуль обладает более широкими по сравнению с прототипом функциональными возможностями, так как с помощью константной настройки реализует любую из простых симметричных булевых функций τ1, τ2, τ0,5×(n+1),τn-1, τn, зависящих от n аргументов - входных двоичных сигналов, при n=7.
название | год | авторы | номер документа |
---|---|---|---|
ЛОГИЧЕСКИЙ МОДУЛЬ | 2021 |
|
RU2776920C1 |
ЛОГИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ | 2017 |
|
RU2647639C1 |
ЛОГИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ | 2017 |
|
RU2689815C2 |
ЛОГИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ | 2020 |
|
RU2762620C1 |
ЛОГИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ | 2013 |
|
RU2542895C1 |
ЛОГИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ | 2016 |
|
RU2641454C2 |
ЛОГИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ | 2015 |
|
RU2621281C1 |
ЛОГИЧЕСКИЙ МОДУЛЬ | 2018 |
|
RU2700550C1 |
ЛОГИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ | 2020 |
|
RU2757817C1 |
ЛОГИЧЕСКИЙ МОДУЛЬ | 2018 |
|
RU2704737C1 |
Изобретение относится к логическому модулю, предназначенному для реализации простых симметричных булевых функций. Технический результат заключается в расширении функциональных возможностей за счет обеспечения реализации с помощью константной настройки любой из простых симметричных булевых функций, зависящих от n аргументов. Модуль содержит два элемента И, два элемента ИЛИ и четыре мажоритарных элемента, причем первый, второй входы j-го элемента И, третий вход и выход третьего мажоритарного элемента соединены соответственно с первым, вторым входами j-го элемента ИЛИ, выходом второго и вторым входом четвертого мажоритарных элементов, а первый, второй входы первого элемента И подключены соответственно к первому, второму информационным входам логического модуля, при этом в него дополнительно введены шесть мажоритарных элементов, первый, второй и третий входы j-го мажоритарного элемента соединены соответственно с первым, вторым входами j-го элемента И и третьими входами j-х элементов И, ИЛИ, выходы (j+3)-го, i-го мажоритарных элементов и выход j-го элемента И подключены соответственно к вторым входам (j+4)-го, (i+1)-го и (4×j-1)-го мажоритарных элементов, третьи входы пятого, шестого, седьмого, девятого мажоритарных элементов и выход j-го элемента ИЛИ соединены соответственно с выходами восьмого, десятого, первого, четвертого и третьим входом (4×j)-го мажоритарных элементов, а объединенные первые входы третьего, седьмого, объединенные первые входы четвертого, шестого, восьмого, девятого, объединенные первые входы пятого, десятого и выход шестого мажоритарных элементов образуют соответственно первый, второй, третий настроечные входы и выход логического модуля, третий, (i-3)-й и седьмой информационные входы которого подключены соответственно к третьему входу первого элемента И, (i-6)-му входу второго и третьему входу десятого мажоритарных элементов. 1 ил.
Логический модуль, предназначенный для реализации простых симметричных булевых функций, содержащий два элемента И, два элемента ИЛИ и четыре мажоритарных элемента, причем первый, второй входы j-го элемента И, третий вход и выход третьего мажоритарного элемента соединены соответственно с первым, вторым входами j-го элемента ИЛИ, выходом второго и вторым входом четвертого мажоритарных элементов, а первый, второй входы первого элемента И подключены соответственно к первому, второму информационным входам логического модуля, отличающийся тем, что в него дополнительно введены шесть мажоритарных элементов, первый, второй и третий входы j-го мажоритарного элемента соединены соответственно с первым, вторым входами j-го элемента И и третьими входами j-х элементов И, ИЛИ, выходы (j+3)-го, i-го мажоритарных элементов и выход j-го элемента И подключены соответственно к вторым входам (j+4)-го, (i+1)-го и (4×j-1)-го мажоритарных элементов, третьи входы пятого, шестого, седьмого, девятого мажоритарных элементов и выход j-го элемента ИЛИ соединены соответственно с выходами восьмого, десятого, первого, четвертого и третьим входом (4×j)-го мажоритарных элементов, а объединенные первые входы третьего, седьмого, объединенные первые входы четвертого, шестого, восьмого, девятого, объединенные первые входы пятого, десятого и выход шестого мажоритарных элементов образуют соответственно первый, второй, третий настроечные входы и выход логического модуля, третий, (i-3)-й и седьмой информационные входы которого подключены соответственно к третьему входу первого элемента И, (i-6)-му входу второго и третьему входу десятого мажоритарных элементов.
ЛОГИЧЕСКИЙ МОДУЛЬ | 2019 |
|
RU2718209C1 |
ЛОГИЧЕСКИЙ МОДУЛЬ | 2015 |
|
RU2621376C1 |
ЛОГИЧЕСКИЙ МОДУЛЬ | 2012 |
|
RU2472209C1 |
Колосоуборка | 1923 |
|
SU2009A1 |
Авторы
Даты
2021-10-21—Публикация
2020-10-28—Подача