Способ получения деталей из жаропрочных никелевых сплавов, включающий технологию селективного лазерного сплавления и термическую обработку Российский патент 2018 года по МПК B23K26/144 B23K26/70 B33Y30/00 

Описание патента на изобретение RU2674685C1

Изобретение относится к аддитивным технологиям (технология Selective laser melting, SLM, селективное лазерное сплавление, СЛС), а именно к изготовлению деталей технологией селективного лазерного сплавления металлических порошков жаропрочных никелевых сплавов, и может использоваться для производства деталей и узлов авиационных и ракетно-космических систем.

Известны способы (патенты РФ №2371512 и №2285736) получения изделий из сложнолегированных жаропрочных никелевых сплавов с количеством γ'-фазы более 40%, основанных на многостадийной деформации слитка и последующей термической обработке при температуре ниже температуры полного растворения γ'-фазы. Недостатком этих способов является низкий и неоднородный уровень механических свойств.

Известен способ (патент РФ №2453398) получения деталей из сплава типа ВВ751П с высокой прочностью и жаропрочностью с использованием горячего изостатического прессования и последующей закалки выше температуры сольвуса. Недостатком этого способа является необходимость использования оснастки при формовании заготовок, низкий выход годных изделий при использовании в качестве оснастки капсул из-за плохой их герметизации, использование металлического порошка большой фракции, что приводит к возникновению высокой шероховатости поверхностей деталей.

С целью устранения перечисленных недостатков предлагается способ получения изделия из жаропрочных никелевых сплавов с высокой прочностью и жаропрочностью, включающий технологию селективного лазерного сплавления и термическую обработку.

Предлагаемый способ отличается от известных тем, что изготовление деталей производят послойно из металлического порошка фракцией до 50 мкм жаропрочного никелевого сплава технологией селективного лазерного сплавления. Изготовление деталей технологией селективного лазерного сплавления происходит при следующих технологических параметрах: мощность лазерного излучения от 280 до 320 Вт, скорость сканирования от 700 до 760 мм/с, толщина слоя 50 мкм и шаг сканирования 0,12 мм. Термическая обработка проводится при температуре 1000±100°С в течение 2 часов. При этом нагрев деталей осуществляют постепенно с выдержкой в течение 2 часов при температурах 200°С, 400°С, 600°С, 800°С. Охлаждение деталей происходит совместно с печкой.

Технический результат - получение функциональных деталей технологией селективного лазерного сплавления, высокие механические характеристики деталей достигаемые за счет применения оптимальных технологических параметров обработки, высокая плотность деталей за счет применения оптимальных параметров обработки, низкий уровень остаточных напряжений в деталях за счет проведения термической обработки, и, как следствие, высокая точность размеров и расположения поверхностей, существенное повышение коэффициента использования материала (КИМ).

Технический результат достигается за счет того, что изготовление деталей технологией селективного лазерного сплавления проводят при мощности лазерного излучения от 280 до 320 Вт, скорости сканирования от 700 до 760 мм/с, толщине слоя 50 мкм и шаге сканирования 0,12 мм. Термическая обработка проводится при температуре 1000±100°С в течение 2 часов, при этом нагрев деталей осуществляют постепенно с выдержкой в течение 2 часов при температурах 200°С, 400°С, 600°С, 800°С. Охлаждение деталей происходит совместно с печкой.

Это достигается тем, что при применении оптимальных технологических параметров изготовления деталей технологией селективного лазерного сплавления достигается высокая плотность материала за счет подвода оптимального количества энергии. Так, например, при использовании не оптимальных параметров (низкой мощности лазерного излучения совместно с высокой скоростью сканирования) не будет подводиться достаточной энергии для полного расплавления порошка. Если мощность лазерного излучения в высокоскоростном режиме достаточно высока, чтобы полностью расплавить металлический порошок, существует вероятность того, что сильно вытянутый бассейн расплава будет разбит на более мелкие расплавы. При использовании режимов с высокой мощностью лазерного излучения и низкой скоростью сканирования, на материал будет подаваться избыточное количество теплоты, и плавление материала будет происходить в режиме, который называется «замочной скважиной». При этом режиме лазерный луч локально создает температуру достаточную для испарения материала, что приводит к возникновению высокой пористости материала и, как следствие, к его низким механическим свойствам.

Изобретение поясняется следующими чертежами.

На фиг. 1 изображено образование зоны перекрытия между векторами сканирования.

На фиг. 2 изображена микроструктура материала.

Указанные режимы позволяют полностью сплавлять металлический порошок жаропрочного никелевого сплава, создавая зону перекрытия между векторами сканирования на уровне 30…45% (Фиг. 1 и Фиг. 2) что положительно сказывается на механических свойствах материала.

Низкий уровень остаточных напряжений достигается за счет применения термической обработки, которая проводится при температуре 1000±100°С в течение 2 часов, при этом нагрев деталей осуществляют постепенно с выдержкой в течение 2 часов при температурах 200°С, 400°С, 600°С, 800°С. Охлаждение деталей происходит совместно с печкой. Термическая обработка проводится после изготовления детали технологией селективного лазерного сплавления и до отрезки детали от платформы построения. Поэтапное повышение температуры в процессе термической обработки позволяет избежать появления трещин и короблений, а также приводит к более равномерному снятию остаточных напряжений.

Предлагаемым способом были изготовлены полномасштабные цилиндрические образцы для испытания на одноосное растяжение.

Для осуществления изобретения образцы изготавливались из жаропрочного никелевого сплава ВВ751П производства ОАО "ВИЛС" фракцией до 50 мкм. Изготовление деталей технологией селективного лазерного сплавления осуществлялось при мощности лазерного излучения 320 Вт, скорости сканирования 760 мм/с, толщине слоя 50 мкм и шаге сканирования 0,12 мм. Процесс изготовления деталей технологией селективного лазерного сплавления происходил внутри герметичной камеры в среде защитного газа. Также осуществляется предварительный нагрев платформы построения до температуры 180°С.

Процесс селективного лазерного сплавления заключался в разбиении цифровой трехмерной CAD модели на слои толщиной 50 мкм. Затем при помощи специального модуля, входящего в программное обеспечение MagicsRP, были назначены параметры построения детали (мощность лазерного излучения, скорость сканирования и т.д.). Затем все данные были переданы в установку для начала процесса построения. Из бака, в котором содержался металлический порошок при помощи шнека исходный материал порционно подавался в дозатор (рекоутер). Дозатор перемещаясь в горизонтальном направлении доставлял металлический порошок на платформу построения и при помощи силиконового ножа разравнивал его. После того как слой порошка был выравнен в работу вступал лазер и при помощи системы зеркал выборочно сплавлял металлический порошок. При воздействии лазерного излучения порошок нагревался, а при приложении необходимой энергии, плавился образуя жидкую ванну. Затем жидкая ванна быстро затвердевала тем самым образуя фрагмент детали. После того как селективное лазерное сканирование текущего слоя было закончено, платформа построения при помощи поршня опускалась по оси Z на величину слоя, и насыпался новый слой порошка. Процесс являлся циклическим и повторяется до тех пор, пока деталь не была полностью закончена.

Далее изготовленные образцы подвергались термической обработке по режиму: постепенный нагрев деталей осуществлялся постепенно с выдержкой в течение 2 часов при температурах 200°С, 400°С, 600°С, 800°С. Затем термическая обработка в течение 2 часов при температуре 1000±100°С. Затем охлаждение детали в печи.

Результаты испытаний механических свойств образцов, изготовленных предлагаемым способом, представлены в таблице 1.

Таким образом, предлагаемый способ позволяет изготавливать функциональные детали с достаточным уровнем механических свойств, высокой плотностью и низким КИМ.

В результате этого применение предлагаемого способа изготовления для горелок, завихрителей и камер сгорания газотурбинных двигателей позволит повысить КИМ, снизить затраты на изготовление технологической оснастки, сократить время изготовления подобных деталей в несколько раз.

Похожие патенты RU2674685C1

название год авторы номер документа
Способ получения заготовок деталей и сборочных единиц индустриальных двигателей методом селективного лазерного сплавления металлического порошка 2022
  • Смелов Виталий Геннадиевич
  • Хаймович Александр Исаакович
  • Агаповичев Антон Васильевич
  • Петрухин Анатолий Геннадьевич
  • Чупин Павел Владимирович
  • Щедрин Евгений Юрьевич
RU2811330C1
СПОСОБ ИЗГОТОВЛЕНИЯ ДЕТАЛЕЙ ПОСЛОЙНЫМ ЛАЗЕРНЫМ СПЛАВЛЕНИЕМ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ ЖАРОПРОЧНЫХ СПЛАВОВ НА ОСНОВЕ НИКЕЛЯ 2015
  • Каблов Евгений Николаевич
  • Неруш Святослав Васильевич
  • Евгенов Александр Геннадьевич
  • Рогалев Алексей Михайлович
  • Василенко Светлана Александровна
  • Ходырев Никита Алексеевич
  • Сухов Дмитрий Игоревич
RU2623537C2
Способ изготовления деталей сложной формы гибридным литейно-аддитивным методом 2020
  • Гузеев Виктор Иванович
  • Казанский Антон Дмитриевич
  • Федоров Виктор Борисович
RU2752359C1
Способ производства деталей малоразмерного газотурбинного двигателя с тягой до 150 кгс методом селективного лазерного сплавления 2021
  • Каблов Евгений Николаевич
  • Оспенникова Ольга Геннадиевна
  • Антипов Владислав Валерьевич
  • Бакрадзе Михаил Михайлович
  • Неруш Святослав Васильевич
  • Мазалов Павел Борисович
  • Сухов Дмитрий Игоревич
  • Ходырев Никита Алексеевич
  • Тарасов Сергей Александрович
  • Пашков Александр Игоревич
  • Асланян Гарегин Григорович
  • Шакиров Артем Ренатович
  • Тарасов Георгий Георгиевич
  • Мурысин Денис Александрович
  • Титов Семен Сергеевич
RU2767968C1
Способ получения деталей из алюминиевых сплавов методом селективного лазерного сплавления 2019
  • Смелов Виталий Геннадиевич
  • Агаповичев Антон Васильевич
  • Сотов Антон Владимирович
  • Хаймович Александр Исаакович
  • Кирилин Александр Сергеевич
RU2728450C1
Способ изготовления изделия из никелевых сплавов с управляемой переменной структурой 2022
  • Борисов Евгений Владиславович
  • Стариков Кирилл Андреевич
  • Попович Анатолий Анатольевич
RU2810141C1
Способ получения деталей из алюминиевого сплава системы Al-Mg-Sc технологией селективного лазерного сплавления 2022
  • Смелов Виталий Геннадиевич
  • Хаймович Александр Исаакович
  • Агаповичев Антон Васильевич
  • Алексеев Вячеслав Петрович
  • Кяримов Рустам Равильевич
  • Балякин Андрей Владимирович
  • Гончаров Евгений Станиславович
  • Олейник Максим Андреевич
  • Кокарева Виктория Валерьевна
RU2782192C1
Способ получения деталей из конструкционной стали 38Х2МЮА технологией селективного лазерного сплавления 2023
  • Смелов Виталий Геннадиевич
  • Хаймович Александр Исаакович
  • Вдовин Роман Александрович
  • Алексеев Вячеслав Петрович
  • Кяримов Рустам Равильевич
  • Балякин Андрей Владимирович
  • Кокарева Виктория Валерьевна
RU2812102C1
Способ формирования композиционного материала методом селективного лазерного плавления порошка жаропрочного никелевого сплава на подложке из титанового сплава 2019
  • Коновалов Сергей Валерьевич
  • Носова Екатерина Александровна
  • Смелов Виталий Геннадиевич
  • Осинцев Кирилл Александрович
RU2713255C1
Способ изготовления заготовок послойным лазерным сплавлением металлических порошков сплавов на основе титана 2022
  • Неруш Святослав Васильевич
  • Рогалев Алексей Михайлович
  • Сухов Дмитрий Игоревич
  • Куркин Сергей Эдуардович
  • Панин Павел Васильевич
  • Рик Артур Алексеевич
RU2790493C1

Иллюстрации к изобретению RU 2 674 685 C1

Реферат патента 2018 года Способ получения деталей из жаропрочных никелевых сплавов, включающий технологию селективного лазерного сплавления и термическую обработку

Изобретение относится к способу изготовления деталей из жаропрочных сплавов на основе никеля, предназначенных для работы в условиях повышенных температур в газотурбинных двигателях. Деталь получают путем селективного лазерного сплавления с мощностью лазерного излучения от 280 до 320 Вт, скоростью сканирования от 700 до 760 мм/с, толщиной слоя 50 мкм и шагом сканирования 0,12 мм. Процесс изготовления деталей технологией селективного лазерного сплавления происходит внутри герметичной камеры в среде защитного газа. Затем проводят термическую обработку при температуре 1000±100°С в течение 2 часов. Нагрев детали осуществляют постепенно с выдержкой в течение 2 часов при температурах 200°С, 400°С, 600°С, 800°С. Охлаждение детали проводят совместно с печкой. Технический результат - получение деталей с низкой пористостью, с высокими механическими свойствами и низким уровнем остаточных напряжений. 2 ил., 1 табл.

Формула изобретения RU 2 674 685 C1

Способ получения детали из жаропрочных никелевых сплавов, включающий использование металлических порошков, отличающийся тем, что осуществляют селективное лазерное сплавление металлического порошка с мощностью лазерного излучения от 280 до 320 Вт, скоростью сканирования от 700 до 760 мм/с, шагом сканирования 0,12 мм и толщиной каждого слоя 50 мкм и затем термическую обработку полученной детали при температуре 1000±100°С в течение 2 часов, при этом нагрев детали осуществляют постепенно с выдержкой в течение 2 часов при температурах 200°С, 400°С, 600°С, 800°С, причем охлаждение детали производят совместно с печкой.

Документы, цитированные в отчете о поиске Патент 2018 года RU2674685C1

СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЯ ИЗ СПЛАВА ТИПА ВВ751П С ВЫСОКОЙ ПРОЧНОСТЬЮ И ЖАРОПРОЧНОСТЬЮ 2011
  • Гарибов Генрих Саркисович
  • Гриц Нина Михайловна
  • Востриков Алексей Владимирович
  • Федоренко Елизавета Александровна
  • Казберович Алексей Михайлович
RU2453398C1
СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЯ ИЗ ЖАРОПРОЧНОГО НИКЕЛЕВОГО СПЛАВА 2008
  • Скляренко Владимир Георгиевич
  • Ломберг Борис Самуилович
  • Малашенко Юрий Васильевич
  • Кошелев Юрий Николаевич
  • Кабанов Илья Викторович
  • Каленов Сергей Владимирович
  • Некрасов Борис Романович
RU2371512C1
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ СЛОЖНОЙ ФОРМЫ ИЗ ПОРОШКОВЫХ СИСТЕМ 2014
  • Волосова Марина Александровна
  • Тарасова Татьяна Васильевна
  • Назаров Алексей Петрович
RU2562722C1
СПОСОБ ИЗГОТОВЛЕНИЯ МЕТАЛЛИЧЕСКОГО КОМПОНЕНТА ПОСРЕДСТВОМ АДДИТИВНОГО ЛАЗЕРНОГО ИЗГОТОВЛЕНИЯ 2013
  • Эттер
  • Контер
  • Хебель, Маттиас
  • Шурб
RU2574536C2
DE 19953000 A1, 17.05.2001
Холодильная камера 1985
  • Баландина Елена Дмитриевна
  • Юнгеров Евгений Львович
  • Пантелеев Владимир Владимирович
SU1296798A1
DE 202007004683 U1, 27.09.2007
JP 2004140078 A, 13.05.2004.

RU 2 674 685 C1

Авторы

Смелов Виталий Геннадиевич

Сотов Антон Владимирович

Агаповичев Антон Васильевич

Кяримов Рустам Равильевич

Даты

2018-12-13Публикация

2018-06-05Подача