Способ получения люминесцентного ортофосфата кальция, активированного церием Российский патент 2022 года по МПК C01B25/32 C09K11/81 C09K11/77 C09K11/71 

Описание патента на изобретение RU2779453C1

Изобретение относится к химической и медицинской отраслям промышленности и может быть использовано в качестве исходного компонента для изготовления биосовместимого керамического или композиционного пористого или плотного материала имплантата для использования в реконструктивно-пластических операциях челюстно-лицевой хирургии, ортопедии, травматологии, онкологии; для нанесения биоактивных покрытий на металлические имплантаты; в качестве компонента композиций, предназначенных для реставрации или неинвазивного лечения кариозных поражений зубов в стоматологии.

Материалы обладают биологической совместимостью и биологической активностью. Основными требованиями, предъявляемыми к порошкам как исходным компонентам материалов для хирургии и стоматологии, является фазовая чистота, высокая дисперсность и узкий фракционный состав. Достижение указанных характеристик позволяет изготовить более прочное, целостное изделие для имплантации; достичь способности к удовлетворительной скорости биодеградации материала в условиях организма с целью согласованности процессов восстановления костной ткани или удовлетворительного реминерализирующего эффекта в околозубной среде. Заявленное изобретение отличается наличием ионов церия в структуре ортофосфата кальция, что придает материалу способность к люминесценции и позволит осуществить неинвазивную визуализацию процессов регенерации костной ткани или процессов реминерализации зубной эмали.

Известен способ получения аморфного трикальцийфосфата, прекурсора ортофосфата кальция [RU 2691051], заключающийся в осаждении средних фосфатов кальция, образующихся при сливании и постоянном перемешивании водного раствора хлористого кальция и диаммонийфосфата в избытке аммиака с последующей фильтрацией, промывкой и сушкой осадка; в результате получают ортофосфат кальция в аморфной форме, не оказывающего раздражающего воздействия на кожу, не содержащего примесей. Недостатком способа является отсутствие люминесцентной способности получаемого вещества.

Известен способ получения люминофора на основе гидроортофосфата кальция (CaHPO4) [RU 219726] путем взаимодействия при тщательном перемешивании водных растворов хлористого кальция и фосфата аммония, отмывки образовавшейся суспензии от маточного раствора, его обезвоживания при нагреве и использования продукта в приготовлении шихты люминофора для люминесцентных ламп. Недостатком известного способа является активация гидроортофосфата кальция сурьмой и марганцем в составе шихты при спекании, присутствие иных соединений, ограничивающих применение люминофора в медицине.

Известны материалы, содержащие ионы церия и проявляющие люминесцентные свойства [SU 2510946, RU 2549406, RU 2405804]. В известных изобретениях в качестве люминесцирующего материала выступают соединения со структурой граната, содержащие ионы церия. Такие материалы используются в светотехнике, однако недостатком является отсутствие биосовместимости, что делает невозможным их применение в качестве биоматериалов.

Наиболее близким по технологическому решению к заявленному способу является способ получения катионзамещенного ортофосфата кальция путем введения ряда катионов в структуру ортофосфата кальция в виде нитратов или ацетатов, или хлоридов на стадии осаждения средних фосфатов кальция, образующихся при сливании и постоянном перемешивании водных растворов нитрата кальция и двузамещенного фосфата аммония, взятых в мольном соотношении 3:2, при рН 7,0, с последующим фильтрованием и прокаливанием образовавшегося осадка [RU 2607743]. Недостатком известного способа является отсутствие у получаемых материалов люминесцентной активности.

Техническим результатом заявленного изобретения является способность порошка ортофосфата кальция к люминесцентному свечению в диапазоне от 360 до 500 нм при облучении источником света с длинной волны 270-320 нм.

Технический результат достигается тем, что в способе получения люминесцентного ортофосфата кальция, активированного церием, при осаждении из водных растворов нитрата кальция и гидрофосфата аммония, взятых в мольном соотношении катионов к фосфат-анионам 1,5, при уровне рН среды 7,0±0,2, с последующим отделением осадка, промыванием, сушкой, протиранием, согласно изобретению, перед смешением водных растворов к раствору нитрата кальция добавляют раствор нитрата церия (3+) при следующем соотношении реагентов, мол. %: нитрат кальция - 59,5-59,9; двузамещенный фосфат аммония - 40,0; нитрат церия (3+) - 0,1-0,5; при этом соблюдая мольное соотношение (Са+Се)/Р=1,5, после синтеза получают низкозакристаллизованные порошки со структурой трикальцийфосфата орторомбической модификации, средним размером частиц 90-130 нм, содержанием церия 0,1-0,5 мол. %, характеризующиеся люминесцентной способностью при возбуждении ультрафиолетовым светом.

Сущность изобретения заключается в том, что при синтезе ортофосфата кальция осаждением из водных растворов происходит включение ионов Се (3+) в кристаллическую решетку ортофосфата кальция с образованием твердого раствора замещения ионов Са (2+) на ионы Се (3+), которые имеют способность к фотолюминесценции при возбуждении ультрафиолетовым светом, что обусловлено электронным переходом 4f→5d. Таким образом, наличие Се (3+) приводит к активации порошка ортофосфата кальция, что выражается в люминесценции в диапазоне длин волн 300-500 нм.

Пример 1.

В реактор с верхнеприводной мешалкой помещают 299,7 мл водного раствора нитрата кальция концентрацией 0,5 М и 1,5 мл водного раствора нитрата церия (3+) концентрацией 0,1 М. Уровень рН среды доводят до 7,0±0,2 и поддерживают на протяжении всего синтеза путем покапельного добавления 25%-ного водного раствора аммиака с помощью пипетки. К полученной смеси при постоянном перемешивании покапельно с помощью делительной воронки добавляют 200 мл водного раствора гидрофосфата аммония концентрацией 0,5 М. При этом соблюдают мольное соотношение (Са+Се)/Р=1,5. Полученный осадок перемешивают в течении 2 ч, затем отфильтровывают от маточного раствора, промывают дистиллированной водой и сушат при температуре 80-110°С.Площадь удельной поверхности частиц получаемых порошков, составляет 24 м2/г, количество церия в порошках составляет 0,10 мол. %. Порошки соответствуют орторомбической модификации ортофосфата кальция, иных фаз не выявлено. Интенсивность фотолюминесценции получаемых порошков составила 175 и 144 от. ед. при облучении длинной волны 270 и 316 нм соответственно.

Пример 2.

В реактор с верхнеприводной мешалкой помещают 299,25 мл водного раствора нитрата кальция концентрацией 0,5 М и 3,75 мл водного раствора нитрата церия (3+) концентрацией 0,1 М. Уровень рН среды доводят до 7,0±0,2 и поддерживают на протяжении всего синтеза путем покапельного добавления 25%-ного водного раствора аммиака с помощью пипетки. К полученной смеси при постоянном перемешивании покапельно с помощью делительной воронки добавляют 200 мл водного раствора гидрофосфата аммония концентрацией 0,5 М. При этом соблюдают мольное соотношение (Са+Се)/Р=1,5. Полученный осадок перемешивают в течении 2 ч, затем отфильтровывают от маточного раствора, промывают дистиллированной водой и сушат при температуре 80-110°С. Площадь удельной поверхности частиц получаемых порошков, составляет 23 м2/г, количество церия в порошках составляет 0,22 мол. %. Порошки соответствуют орторомбической модификации ортофосфата кальция, иных фаз не выявлено. Интенсивность фотолюминесценции получаемых порошков составила 1010 и 968 от. ед. при облучении длинной волны 270 и 316 нм соответственно.

Пример 3.

В реактор с верхнеприводной мешалкой помещают 298,5 мл водного раствора нитрата кальция концентрацией 0,5 М и 7,5 мл водного раствора нитрата церия (3+) концентрацией 0,1 М. Уровень рН среды доводят до 7,0±0,2 и поддерживают на протяжении всего синтеза путем покапельного добавления 25%-ного водного раствора аммиака с помощью пипетки. К полученной смеси при постоянном перемешивании покапельно с помощью делительной воронки добавляют 200 мл водного раствора гидрофосфата аммония концентрацией 0,5 М. При этом соблюдают мольное соотношение (Са+Се)/Р=1,5. Полученный осадок перемешивают в течении 2 ч, затем отфильтровывают от маточного раствора, промывают дистиллированной водой и сушат при температуре 80-110°С. Площадь удельной поверхности частиц получаемых порошков, составляет 17 м2/г, количество церия в порошках составляет 0,44 мол. %. Порошки соответствуют орторомбической модификации ортофосфата кальция, иных фаз не выявлено. Интенсивность фотолюминесценции получаемых порошков составила 210 и 232 от. ед. при облучении длинной волны 270 и 316 нм соответственно.

Пример 4.

В реактор с верхнеприводной мешалкой помещают 300 мл водного раствора нитрата кальция концентрацией 0,5 М. Уровень рН среды доводят до 7,0±0,2 и поддерживают на протяжении всего синтеза путем покапельного добавления 25%-ного водного раствора аммиака с помощью пипетки. К полученной смеси при постоянном перемешивании покапельно с помощью делительной воронки добавляют 200 мл водного раствора гидрофосфата аммония концентрацией 0,5 М. При этом соблюдают мольное соотношение Са/Р=1,5. Полученный осадок перемешивают в течении 2 ч, затем отфильтровывают от маточного раствора, промывают дистиллированной водой и сушат при температуре 80-110°С. Площадь удельной поверхности частиц получаемых порошков, составляет 28 м /г, количество церия в порошках составляет 0 мол. %. Порошки соответствуют орторомбической модификации ортофосфата кальция, иных фаз не выявлено. Основным отличием получаемых порошков является отсутствие приемлемой интенсивности люминесценции при возбуждении УФ-светом.

Для всех полученных материалов определяют фазовый состав методом рентгенофазового анализа (РФА) после прокаливания при температуре 1300°С: в результате высокотемпературной обработки порошок кристаллизуется, и можно судить о фазовом составе с высокой точностью. С помощью ИК-спектроскопии, определяют средний размер частиц согласно методу низкотемпературной адсорбции БЭТ (Sуд.), методами химического анализа оценивают количество церия. В таблице 1 представлены характеристики порошков в соответствии с условиями синтеза. На фигуре 1 представлены спектры фотолюминесценции порошков церий-содержащих ортофосфатов кальция в соответствии с Примерами 1-4 при возбуждении длинной волны: (а) 270 нм; (б) 316 нм. Спектры возбуждения и фотолюминесценции (ФЛ) порошков регистрируют при комнатной температуре, диапазон возбуждения (λехс) - 270-316 нм, диапазон люминесценции (λem) - 350-420 нм, разрешение 0,5 нм, в качестве источника возбуждения используют ксеноновую лампу, ширину щели на испускание 3,5 нм (рис. 1, табл. 1).

Похожие патенты RU2779453C1

название год авторы номер документа
Способ получения субмикронного люминесцентного порошка алюмоиттриевого граната, допированного церием (III) 2023
  • Сайкова Светлана Васильевна
  • Павликов Александр Юрьевич
  • Карпов Денис Вадимович
RU2820210C1
Способ получения катионзамещенного трикальцийфосфата 2015
  • Баринов Сергей Миронович
  • Фадеева Инна Вилоровна
  • Фомин Александр Сергеевич
  • Филиппов Ярослав Юрьевич
RU2607743C1
Способ получения наноразмерного высоколюминесцентного апатита с примесью европия (Eu) 2016
  • Николаев Антон Михайлович
  • Колесников Илья Евгеньевич
  • Франк-Каменецкая Ольга Викторовна
  • Кузьмина Мария Анатольевна
RU2628610C1
Способ получения порошкового однофазного вольфрамсодержащего гидроксиапатита методом химического соосаждения 2023
  • Антонова Ольга Станиславовна
  • Гольдберг Маргарита Александровна
  • Донская Надежда Олеговна
  • Тютькова Юлия Борисовна
  • Баринов Сергей Миронович
  • Комлев Владимир Сергеевич
  • Фомин Александр Сергеевич
RU2816665C1
СПОСОБ ПОЛУЧЕНИЯ ЛЮМИНОФОРА ФОСФАТА ЛАНТАНА, АКТИВИРОВАННОГО ЦЕРИЕМ И ТЕРБИЕМ 2016
  • Стеблевская Надежда Ивановна
  • Белобелецкая Маргарита Витальевна
  • Медков Михаил Азарьевич
RU2617348C1
Способ получения двойного ортофосфата лития и переходного металла 2022
  • Маслова Марина Валентиновна
  • Иваненко Владимир Иванович
  • Жаров Никита Владимирович
RU2794175C1
СПОСОБ ПОЛУЧЕНИЯ ГИДРОКСИЛАПАТИТА 1993
RU2088521C1
СПОСОБ ПОЛУЧЕНИЯ ЛЮМИНЕСЦЕНТНОЙ КЕРАМИКИ НА ОСНОВЕ СЛОЖНЫХ ОКСИДОВ СО СТРУКТУРОЙ ГРАНАТА 2017
  • Гордиенко Екатерина Вадимовна
  • Досовицкий Алексей Ефимович
  • Досовицкий Георгий Алексеевич
  • Карпюк Петр Викторович
  • Коржик Михаил Васильевич
  • Кузнецова Дарья Евгеньевна
  • Мечинский Виталий Александрович
  • Ретивов Василий Михайлович
  • Федоров Андрей Анатольевич
RU2711318C2
СИНТЕЗ НАНОЧАСТИЦ, СОДЕРЖАЩИХ ВАНАДАТ МЕТАЛЛА (III) 2004
  • Хайдельберг Торстен
  • Мейер Кристиане
  • Кюль Имке
RU2344162C2
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТЫХ МАТЕРИАЛОВ ИЗ АЛЬГИНАТА НАТРИЯ И ПОЛИВИНИЛПИРРОЛИДОНА, СОДЕРЖАЩИХ ФОСФАТЫ КАЛЬЦИЯ 2019
  • Фадеева Инна Вилоровна
  • Фомин Александр Сергеевич
  • Баринов Сергей Миронович
  • Трофимчук Елена Сергеевна
RU2705084C1

Иллюстрации к изобретению RU 2 779 453 C1

Реферат патента 2022 года Способ получения люминесцентного ортофосфата кальция, активированного церием

Изобретение относится к химической и медицинской отраслям промышленности и может быть использовано в качестве исходного компонента для изготовления биосовместимого материала для внутрикостной имплантации, для изготовления композиции для реставрации или лечения кариозных поражений зубов в стоматологии. Предложен способ получения люминесцентного ортофосфата кальция, активированного церием, при осаждении из водных растворов нитрата кальция и гидрофосфата аммония, взятых в мольном соотношении катионов к фосфат-анионам 1,50±0,5, при уровне рН среды 7,0±0,2, с последующим отделением осадка, промыванием, сушкой, протиранием, отличающийся тем, что перед смешением водных растворов к раствору нитрата кальция добавляют раствор нитрата церия (3+) при следующем соотношении реагентов, мол.%: нитрат кальция - 59,5-59,9; двузамещенный фосфат аммония - 40,0; нитрат церия (3+) - 0,1-0,5. При этом соблюдают мольное соотношение (Са+Се)/Р=1,50±0,5, после синтеза получают низкозакристаллизованные порошки со структурой трикальцийфосфата орторомбической модификации, средним размером частиц 90-130 нм, содержанием церия 0,1-0,5 мол.%, характеризующиеся люминесцентной способностью при возбуждении ультрафиолетовым светом. Технический результат – предложенный способ позволяет получить порошок ортофосфата кальция со способностью к люминесцентному свечению в диапазоне от 360 до 500 нм при облучении источником света с длиной волны 270-320 нм. 1 ил., 1 табл., 4 пр.

Формула изобретения RU 2 779 453 C1

Способ получения люминесцентного ортофосфата кальция, активированного церием, при осаждении из водных растворов нитрата кальция и гидрофосфата аммония, взятых в мольном соотношении катионов к фосфат-анионам 1,50±0,5, при уровне рН среды 7,0±0,2, с последующим отделением осадка, промыванием, сушкой, протиранием, отличающийся тем, что перед смешением водных растворов к раствору нитрата кальция добавляют раствор нитрата церия (3+) при следующем соотношении реагентов, мол.%: нитрат кальция - 59,5-59,9; двузамещенный фосфат аммония - 40,0; нитрат церия (3+) - 0,1-0,5; при этом соблюдая мольное соотношение (Са+Се)/Р=1,50±0,5, после синтеза получают низкозакристаллизованные порошки со структурой трикальцийфосфата орторомбической модификации, средним размером частиц 90-130 нм, содержанием церия 0,1-0,5 мол.%, характеризующиеся люминесцентной способностью при возбуждении ультрафиолетовым светом.

Документы, цитированные в отчете о поиске Патент 2022 года RU2779453C1

Способ получения катионзамещенного трикальцийфосфата 2015
  • Баринов Сергей Миронович
  • Фадеева Инна Вилоровна
  • Фомин Александр Сергеевич
  • Филиппов Ярослав Юрьевич
RU2607743C1
CN 108517210 A, 11.09.2018
Регулятор переменного тока 1972
  • Васерина Ксения Натановна
  • Кукеков Георгий Александрович
  • Лунин Вячеслав Петрович
SU550744A1
1969
SU417366A1
Сафронова Т.В., Путляев В.И
Медицинское неорганическое материаловедение в России: кальцийфосфатные материалы // Наносистемы: физика, химия, математика
Многоступенчатая активно-реактивная турбина 1924
  • Ф. Лезель
SU2013A1
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
- С
Пишущая машина для тюркско-арабского шрифта 1922
  • Мадьярова А.
  • Туганов Т.
SU24A1

RU 2 779 453 C1

Авторы

Никитина Юлия Олеговна

Петракова Наталья Валерьевна

Козюхин Сергей Александрович

Комлев Владимир Сергеевич

Баринов Сергей Миронович

Даты

2022-09-07Публикация

2021-12-10Подача