Изобретение относится к технологии сварки продольных и кольцевых швов изделий из углеродистых и низколегированных конструкционных сталей толщиной от 4,0 до 30,0 мм.
Известен способ сварки плавящимся электродом со сквозным проплавлением, при котором металл сварочной ванны удерживают за счет сил поверхностного натяжения из-за нанесенной флюсовой пасты на поверхность стыка со стороны корня шва, состоящей из нескольких фторидов CaF2–BaF2–SrF2. Этот способ служит для повышения качества сварных соединений материалов из углеродистых и низколегированных сталей толщиной от 4,0 мм до 6,0 мм [S. G. Parshin (2012): Using ultrafine particles of activating fluxes for increasing the productivity of MIG/MAG welding of steels, Welding International, 26:10, P. 800-804].
Однако известный способ невозможно использовать для сварки сталей более 6 мм, вследствие возникновения на поверхности расплавленной сварочной ванны шлакового слоя переменного состава из-за образования комплексных соединений, не препятствующих проникновению ионов кислорода к расплаву сварочной ванны, которые уменьшают величину поверхностного натяжения и момент силы, изгибающий поверхность расплавленного металла в сторону увеличения геометрических параметров обратного валика.
Известен способ сварки с помощью поверхностно-инактивного компонента в виде ZrO2 наносимого на обратную сторону стыка размерностью до 60 мкм и толщиной покрытия 200-300 мкм, который позволяет увеличить объем расплавленного металла сварочной ванны, удерживаемый в разделке [Способ управления формированием корневого шва / П.П. Красиков, О.А. Полесский, А.В. Савинов, И.Е. Лапин // Известия ВолгГТУ. Сер. Проблемы материаловедения, сварки и прочности в машиностроении. Вып. 10. - Волгоград, 2014. - № 23 (150). - C. 128-130].
Однако при данном способе нанесения покрытия нет возможности проконтролировать толщину и равномерность нанесенного оксидного слоя, что в свою очередь ухудшает формирование обратного валика, а именно приводит к прожогам и неравномерности получаемых геометрических параметров по длине шва, ухудшая механические свойства получаемого соединения.
Наиболее близким является способ сварки корневого шва с разделкой кромок в смеси защитных газов 82 об.% аргона и 18 об.% углекислого газа, с применением флюсовой пасты на основе Al2O3 для стабилизации геометрических параметров получаемого сварного соединения [Stabilization of Root Parameters for Shielded Arc Welding / P.P. Krasikov, A.V. Savinov, O.A. Polesskiy, A.A. Chudin, L.S. Krasikova, I.V. Kozlov, D.S. Borisov and V.V. Filippov // IOP Conference Series: Materials Science and Engineering. Vol. 1118 : International Conference on Mechanical Engineering and Modern Technologies (MEMT 2020) (Tomsk, Russia, 26-30 October, 2020) / Tomsk Polytechnic University. – [IOP Publishing], 2021. – 5 p. – DOI: 10.1088/1757-899X/1118/1/012012].
Недостатком данного способа является ограниченность применения по толщине изделия до 10 мм и параметрами режима сварки.
Задачей предлагаемого технического решения является разработка способа сварки плавящимся электродом в смеси защитных газов 82%Ar+18%CO2 углеродистых и низколегированных конструкционных сталей, обеспечивающего минимальный размер обратного валика в широком диапазоне параметров режима сварки и толщин изделия без ухудшения механических свойств сварного соединения.
Технический результат заключается в увеличение области допустимых отклонений заданных параметров сварочного процесса без ухудшения механических свойств сварного соединения для изделий толщиной 4-30 мм.
Технический результат достигается в способе сварки плавящимся электродом углеродистых и низколегированных конструкционных сталей, при котором сварка ведется в смеси защитных газов 82 об.% аргона и 18 об.% углекислого газа с помощью флюс-пасты на основе порошка оксида, при этом флюс-паста наносится в виде покрытия из порошка Y2O3 или CaO с размером зерен до 39 мкм, разведенного в спирте в массовом соотношении 1:3 и нанесенного на свариваемые поверхности с образованием оксидного покрытия плотностью нанесения оксида в 0,045-0,055 г/см2 и относительной массовой концентрации оксида в зоне расплава сварочной ванны равной 1,8-2,2%.
Сущность способа заключается в том, что порошок Y2O3 или CaO просеивается с помощью сита №004 по ГОСТ6613-86 размерная сетка сита, обеспечивает разную размерность зерен оксида менее 39 мкм. После чего полученный порошок разводится спиртом в массовом соотношении 1 часть оксида к 3 частям спирта. Полученная суспензия при помощи пульверизатора с диаметром сопла 0,5 мм с расстояния 15 см наносится на свариваемые поверхности с обеспечением за одно нажатие пятна нанесенного покрытия площадью 12,6 см2 и поверхностной плотностью 0,0225-0,0275 г/см2. Далее сопло пульверизатора перемещается на половину диаметра полученного пятна и наносится второй слой покрытия. При этом получают требуемую плотность нанесения оксида в 0,045-0,055 г/см2 и относительную концентрацию оксида в зоне расплава сварочной ванны равную 1,8-2,2%. Далее осуществляется сварка в смеси защитных газов 82 об.% аргона и 18 об.% углекислого газа плавящимся электродом сталей марки Ст3сп толщиной 4 мм с разделкой кромок С2 по ГОСТ 14771-76 и стали 09Г2С толщиной 30 мм с разделкой кромок С17 по ГОСТ 14771-76.
Применение оксидного покрытия плотностью нанесения оксида 0,045-0,055 г/см2 и массовой концентрацией в зоне сварочной ванны в диапазоне 1,8-2,2% приводит к получению обратного валика с параметрами, не выходящими за пределы допустимых по ГОСТ 14771-76. При этом повышение поверхностного натяжения на границе между контактирующим оксидом и жидкой сварочной ванны позволяет расширить диапазон параметров режима сварки. При контакте двух фаз с различной работой выхода электрона на границе между двумя точками вблизи границы контакта возникает контактная разница потенциалов, которая препятствует проникновению к границе расплавленной сварочной ванны ионов кислорода О2- и окислению сварочной ванны с образованием FeO уменьшающего поверхностное натяжение расплавленной сварочной ванны.
Учет размера частиц и выполнение заданных параметров поверхностной плотности нанесенного покрытия создает высокую адгезию между частицами оксида и поверхностью металла, вследствие чего не происходит его осыпание во время сварки и, соответственно, уменьшения объема сварочной ванны, что в свою очередь обеспечивает стабильность получения геометрических параметров обратного валика в широкой области допустимых отклонений заданных параметров сварочного процесса.
Расширение диапазона параметров режима сварки в смеси защитных газов 82 об.% аргона и 18 об.% углекислого газа позволяет увеличить диапазон допустимых отклонений заданных параметров сварочного процесса без ухудшения механических свойств сварного соединения, что значительно облегчает сварочный процесс.
Уменьшение концентрации оксида в зоне сварочной ванны ниже заявленного интервала приводит к увеличенному провисанию обратного валика, уменьшению диапазона режимов сварки, в которых параметры обратного валика находятся в допуске. При высоте обратного валика более 2 мм, происходит уменьшение прочности сварного соединения из-за насыщения металла сварочной ванны газами и появления пор в корне шва. Увеличение концентрации оксида в зоне сварочной ванны выше заявленного интервала не приводит к существенному изменению нормируемого показателя высоты обратного валика.
Экспериментальные данные, подтверждающие расширение диапазона параметров режима сварки в смеси защитных газов 82 об.% аргона и 18 об.% углекислого газа для пластин из стали марки Ст3сп (разделка по ГОСТ 14771-76-С2) толщиной 4 мм с использованием оксидного покрытия из Y2O3 приведены в таблице 1.
Таблица 1
Экспериментальные данные, подтверждающие расширение диапазона параметров режима сварки в смеси защитных газов 82 об.% аргона и 18 об.% углекислого газа для пластин из стали марки 09Г2С (разделка по ГОСТ 14771-76-С17) толщиной 30 мм с использованием оксидного покрытия из CaO приведены в таблице 2.
В таблице 2 для пластин из стали марки 09Г2С (разделка по ГОСТ 14771-76-С17) толщиной 30 мм приведены параметры обратного валика, получаемые в результате сварки, выполненной в соответствии с параметрами по прототипу (толщина пластины 10 мм, смесь защитных газов 82 об.% аргона и 18 об.%, флюс-паста на основе Al2O3).
Нормируемый показатель высоты обратного валика по ГОСТ 14771-76-С2 составляет 1,0±1,0 мм, нормируемый показатель высоты обратного валика по ГОСТ 14771-76-С17 составляет 0+2,0 мм.
Таблица 2
Таким образом, способ сварки плавящимся электродом углеродистых и низколегированных конструкционных сталей в смеси защитных газов 82 об.% аргона и 18 об.% углекислого газа с помощью флюс-пасты в виде покрытия из порошка Y2O3 или CaO с размером зерен до 39 мкм, разведенного в спирте в массовом соотношении 1:3 и нанесенного на свариваемые поверхности с образованием оксидного покрытия плотностью нанесения оксида в 0,045-0,055 г/см2 и относительной массовой концентрации оксида в зоне расплава сварочной ванны равной 1,8-2,2%, обеспечивает увеличение области допустимых отклонений заданных параметров сварочного процесса без ухудшения механических свойств сварного соединения для изделий толщиной 4-30 мм.
название | год | авторы | номер документа |
---|---|---|---|
Способ сварки неплавящимся электродом углеродистых и низколегированных конструкционных сталей | 2022 |
|
RU2788385C1 |
СПОСОБ СВАРКИ В СРЕДЕ ЗАЩИТНЫХ ГАЗОВ | 2014 |
|
RU2570609C2 |
Способ вварки труб в трубную доску | 1980 |
|
SU897444A1 |
Способ автоматической приварки труб к трубным доскам | 1980 |
|
SU893474A1 |
Способ гибридной лазерно-дуговой сварки толстостенных труб | 2022 |
|
RU2787195C1 |
СПОСОБ ЛЕГИРОВАНИЯ СВАРНОГО ШВА ПРИ ДУГОВОЙ СВАРКЕ В СРЕДЕ УГЛЕКИСЛОГО ГАЗА | 2012 |
|
RU2492979C1 |
Способ сварки конструкционной стали (варианты) | 2022 |
|
RU2782860C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ВЫСОКОПРОЧНЫХ ШТАМПОСВАРНЫХ ДОНЬЕВ | 2009 |
|
RU2415741C1 |
СПОСОБ ДЛЯ ПРОИЗВОДСТВА СВАРЕННОГО ДУГОВОЙ СВАРКОЙ КОНСТРУКТИВНОГО ЭЛЕМЕНТА | 2013 |
|
RU2635581C2 |
СПОСОБ ДУГОВОЙ СВАРКИ ПЛАВЛЕНИЕМ СТЫКОВЫХ СОЕДИНЕНИЙ С ЗАЗОРОМ | 2004 |
|
RU2262423C1 |
Изобретение относится к технологии сварки продольных и кольцевых швов изделий из углеродистых и низколегированных конструкционных сталей толщиной от 4,0 до 30,0 мм. На свариваемые поверхности наносят флюс-пасту в виде покрытия из порошка Y2O3 или CaO с размером зерен до 39 мкм, разведенного в спирте в массовом соотношении 1:3. Получают покрытие с плотностью нанесения оксида 0,045-0,055 г/см2 и относительной массовой концентрацией оксида в зоне расплава сварочной ванны, равной 1,8-2,2%. Сварку осуществляют в смеси защитных газов, состоящей из 82 об.% аргона и 18 об.% углекислого газа. Технический результат заключается в увеличении области допустимых отклонений заданных параметров сварочного процесса без ухудшения механических свойств сварного соединения для изделий толщиной 4-30 мм. 2 табл.
Способ сварки плавящимся электродом углеродистых и низколегированных конструкционных сталей, при котором сварку ведут в смеси защитных газов 82 об.% аргона и 18 об.% углекислого газа с помощью флюс-пасты на основе порошка оксида, отличающийся тем, что флюс-пасту наносят в виде покрытия из порошка Y2O3 или CaO с размером зерен до 39 мкм, разведенного в спирте в массовом соотношении 1:3, нанесенного на свариваемые поверхности с образованием оксидного покрытия с плотностью нанесения оксида 0,045-0,055 г/см2 и относительной массовой концентрацией оксида в зоне расплава сварочной ванны, равной 1,8-2,2%.
Способ сварки стыковых соединений | 2017 |
|
RU2635680C1 |
СПОСОБ АВТОМАТИЧЕСКОЙ СВАРКИ НЕПОВОРОТНЫХ КОЛЬЦЕВЫХ СТЫКОВ, РАСПОЛОЖЕННЫХ В ГОРИЗОНТАЛЬНОЙ ПЛОСКОСТИ | 2012 |
|
RU2555313C2 |
СПОСОБ МЕХАНИЗИРОВАННОЙ СВАРКИ ПЛАВЯЩИМСЯ ЭЛЕКТРОДОМ В СРЕДЕ ЗАЩИТНЫХ ГАЗОВ | 2015 |
|
RU2613264C2 |
Сварочный флюс | 1981 |
|
SU977129A1 |
US 4611833 A1, 16.09.1986. |
Авторы
Даты
2023-01-17—Публикация
2022-06-29—Подача