СПОСОБ ПЕРЕРАБОТКИ ОТРАБОТАВШЕГО ЭКСТРАГЕНТА, СОДЕРЖАЩЕГО ТРИБУТИЛФОСФАТ Российский патент 2023 года по МПК G21F9/06 G21F9/14 

Описание патента на изобретение RU2791103C1

Изобретение относится к технологии переработки радиоактивных отходов, в частности, загрязненной радиоактивными примесями отработавшей экстракционной смеси на основе трибутилфосфата в инертном разбавителе.

Органические растворы на основе трибутилфосфата (ТБФ) с использованием «легких» (додекан, РЭД, жидкие парафины и др.) или «тяжелых» (гексахлорбутадиен, тетрахлорметан и др.) разбавителей - нашли широкое применение в технологии гидрометаллургической переработки отработавшего ядерного топлива (ПУРЕКС-процесс). В ходе эксплуатации экстракционная смесь подвергается химическому и радиационному воздействию, что приводит к значительному ухудшению ее эксплуатационных характеристик, в том числе снижение селективности к целевым компонентам (U, Pu) и скорости расслаивания. По этой причине периодически пораженную экстракционную смесь выводят из производственного цикла и направляют на контролируемое хранение, как жидкие органические отходы.

В настоящее время отсутствуют промышленные способы переработки и кондиционирования отработавших экстракционных смесей на основе ТБФ, загрязненных радионуклидами. Отработавшие экстракционные смеси длительно хранят в металлических емкостях, в результате чего не эффективно используются производственные мощности предприятия и задействованное под хранение технологическое оборудование. При длительном хранении под воздействием ионизирующего излучения происходит деградация структуры органических компонентов экстракционной смеси, приводящая к неконтролируемому выходу газообразных продуктов в объем аппарата.

Из существующего уровня техники известен способ переработки жидких органических отходов [патент RU 2217824, от 27.11.2003], основанный на химических преобразованиях органических компонентов. В указанном способе на первой стадии предложено отделять органический разбавитель трибутилфосфата отгонкой с острым паром. На второй стадии ТБФ подвергают разложению, которое ведут при температуре 80÷140°С при смешивании экстрагента с активированным углем в присутствии щавелевой кислоты при соотношениях компонентов: экстрагент - 1,0; активированный уголь - 0,4÷1,0; щавелевая кислота - 1,54÷2,0. Авторы заявляют, что при такой обработке компоненты органических отходов вступают во взаимодействие со щавелевой кислотой. При химическом взаимодействии органическая составляющая трибутилфосфата и щавелевая кислота переходят в газообразные продукты, а минеральная часть трибутилфосфата (фосфаты) и радионуклиды адсорбируются на поверхности активированного угля. Образующийся сыпучий радиоактивный материал в дальнейшем перерабатывают для дальнейшего хранения в твердом виде. Основной недостаток данного способа - генерация дополнительного объема радиоактивных отходов за счет введения в рабочую систему новых реагентов.

Известен способ утилизации отработавшей экстракционной смеси на основе трибутилфосфата путем термического разложения ТБФ [патент US 4039468 В2, опубл. 02.08.1977]. В указанном способе отработавшую экстракционную смесь предварительно смешивают с концентрированной фосфорной кислотой. Образующийся сольват трибутилфосфата с фосфорной кислотой и радиоактивными металлами выделяют в виде самостоятельной фазы, а легкую фазу керосина отделяют от радиоактивной смеси. Для полного отделения трибутилфосфата от керосина соблюдают условия, чтобы концентрация фосфорной кислоты в выделенной смеси была не менее 4 моль/л (близкой к эквимолярному отношению).

Далее фосфатную смесь подвергают термическому разложению до летучих углеводородов и фосфорной кислоты при температуре выше 175°С. Для предотвращения полимеризации образующегося бутена процесс проводят в специальной колонне, подавая фосфатную смесь в виде тонкой пленки с тем, чтобы обеспечить быстрое удаление бутена из зоны реакции. Для ускорения процесса разложения органического эфира (ТБФ) и предотвращения полимеризации бутена и его производных предусмотрено добавление в систему катализатора - водяного пара и металлов платиновой группы. Процесс проводят в токе азота.

На заключительной стадии фосфатную смесь отверждают с добавками при температурах от 150 до 600°С.

Этот процесс переработки отработавшей экстракционной смеси за счет термического разложения трибутилфосфата является наиболее близким по технической сущности к предлагаемому новому технологическому решению.

Недостатками прототипа являются многостадийность и сложность аппаратурного оформления процесса, а также длительность переработки отработавшей экстракционной смеси на основе трибутилфосфата

Задачами заявляемого изобретения является упрощение организации процесса переработки экстракционной смеси на основе трибутилфосфата в инертном разбавителе.

Техническим результатом изобретения является полное разрушение (деструкция) структуры трибутилфосфата при температуре 190÷210°С в органическом растворителе при использовании в качестве катализатора избытка фосфорной кислоты, которая является одним из конечных продуктов термического разложения ТБФ по общей реакции (1).

Предлагаемое решение позволит снизить эксплуатационные затраты на проведение процесса, уменьшить расход реагентов, сократить объем накопленных органических отходов, а также улучшить экологическую обстановку в местах их временного хранения.

Сущность заявляемого способа заключается в том, что фосфорная кислота является существенно более химически активным реагентом, чем углеводородные предшественники разложения ТБФ - дибутилфосфорная (ДБФК) и монобутилфосфорная кислоты (МБФК), образующиеся в качестве промежуточных продуктов по реакциям (2) и (3).

В этой связи в процессе разложения и присутствия в системе исходного трибутилфосфата и ДБФК, стационарная концентрация фосфорной кислоты в системе не может быть высокой из-за реакций переалкилирования (5) и (6). Соответственно, при добавлении в систему избытка фосфорной кислоты относительно реакции (7), суммарной для (5) и (6), процесс разложения можно перевести в режим автокатализа и значительно повысить его скорость. Этот избыток фосфорной кислоты должен быть не менее двукратного в мольном отношении к ТБФ.

При реализации процесса в непрерывном режиме для разложения используют оборотную фосфорную кислоту, которая накапливается в системе за счет процесса разложения ТБФ. Избыток фосфорной кислоты с радиоактивными продуктами выводят из процесса и направляют на захоронение, например, в виде фосфатных стекол.

Разрабатываемый способ подтвержден примерами.

Пример 1

Процесс разложения проводили при температуре 190°С в течение 30 минут. Для разложения использовали трибутилфосфат без разбавителя и безводную фосфорную кислоту (ρ=1,87 г/см3) при различных отношениях. Предварительно оба реагента загружали в колбу, снабженную мешалкой, холодильником и приемной колбой для улавливания конденсата, затем нагревали до рабочей температуры при перемешивании.

При избытке фосфорной кислоты процесс протекает бурно, с выделением большого количества бутена и отгонкой органического конденсата (таблица 1). Анализ растворов показал полное отсутствие в системе ТБФ, ДБФК и МБФК для этих случаев (эксперименты 3, 4). При меньшем отношении ТБФ:H3PO4 (эксперименты 1 и 2) заметного разложения ТБФ до конечных продуктов не наблюдалось.

Пример 2

Определили влияние температуры процесса на полноту разложения ТБФ за 60 минут проведения реакции. Процесс также проводили на установке аналогичной примеру 1. Полученные экспериментальные данные с оценкой количества, образовавшихся продуктов по данным ЯМР, приведены в таблице 2.

Анализируя экспериментальные данные можно сделать вывод, что при температуре 150°С степень разложения ТБФ за 60 минут составляет около 30% от исходного количества. При этом значительная часть продуктов разложения представлена МБФК и в меньшей степени ДБФК. При температуре 170°С трибутилфосфат разлагается полностью, однако в реакционной смеси остается значительное количество МБФК и ДБФК. Доля МБФК в этом случае также является основной. При температуре 190°С наблюдается полное разложение всех фосфорсодержащих органических продуктов. По крайней мере, по данным 1Н ЯМР остаточное содержание С4Н9-групп от МБФК и ДБФК в фазе фосфорной кислоты для этой температуры находится в пределах обнаружения метода и не превышает 0,001%.

Пример 3

Оценено межфазное распределение радиоактивных примесей при разложении ТБФ. В качестве модельной отработавшей экстракционной смеси использовали 30 об.% ТБФ в гексахлорбутадиене (ГХБД), содержащей торий и продукты его распада (свинца-212 и актиния-228). Процесс разложения проводили при температуре 190÷195°С с подачей органической фазы в реактор с концентрированной фосфорной кислотой (19 моль/л) до конечного отношения ТБФ:H3PO4=1:3,2 (моль:моль). Скорость подачи органической фазы составляла 1,5 мл/мин. После подачи всего объема экстракционной смеси реакционную массу выдерживали при перемешивании еще 20 мин, затем фазы разделяли.

Распределение тория и продуктов его распада между фосфорной кислотой и органической фазой после разложения ТБФ оценивали по гамма-излучению изотопов свинца-212, Т1/2=10,6 ч, Е - 238,6 кэВ и актиния - 228, Т1/2=6,13 ч, Е - 338,4; 911,1; 968,9 кэВ. Оценку активности растворов проводили сразу после разделения фаз, а также через 7 дней после термической обработки экстракционной смеси для установления равновесия в ряду радиационного распада.

ТБФ разлагается в этой системе полностью, а все радиоактивные изотопы сосредоточены в фазе фосфорной кислоты. После термической обработки удельная активность тория в органической фазе, рассчитанная по продуктам распада, снизилась с 13540 Бк/кг до <285 Бк/кг (более чем на 98%).

Пример 4

Проведено разложение модельного 30 об.% раствора ТБФ в жидком парафине в проточном медном реакторе с пульсационным перемешиванием при различных отношениях фосфорной кислоты и экстракционной смеси. Разделение органической и фосфорнокислой фаз после конденсации летучих углеводородов проводили в отстойнике, аналогичном для экстракционных аппаратов типа «смеситель-отстойник». Разложение проводили при температуре 200÷210°С. Результаты представлены в таблице 3.

Анализ полученных экспериментальных данных (таблица 3) показал, что при различных соотношениях органического потока и оборотной фосфорной кислоты за 10÷12 минут нахождения жидких фаз в реакторе наблюдается практически полное разложение ТБФ в системе до фосфорной кислоты.

По данным ЯМР на ядрах фосфора в органической фазе на выходе из реактора трибутилфосфат, также как и другие органические соединения фосфора, отсутствуют. По крайней мере, их содержание в растворе при максимальном расходе экстракционной смеси не превышает 0,03÷0,05%. Основным органическим продуктом разложения ТБФ с выходом до 98% является смесь алканов и алкенов с температурой кипения от 65 до 210°С.

Таким образом, приведенные выше примеры показывают, что использование заявленного способа переработки экстракционной смеси, содержащей ТБФ и радиоактивные примеси, позволяет проводить глубокое разложение ТБФ в одну стадию в простом проточном реакторе с одновременным переводом примесей в образующуюся фосфорную кислоту без использования дополнительных реагентов и без предварительного отделения растворителя (жидких парафинов или ГХБД).

Похожие патенты RU2791103C1

название год авторы номер документа
СПОСОБ ЗАХОРОНЕНИЯ ОТРАБОТАННОГО ОРГАНИЧЕСКОГО РАДИОАКТИВНОГО ЭКСТРАГЕНТА 2007
  • Гаврилов Петр Михайлович
  • Косарева Инесса Михайловна
  • Ананьев Алексей Владимирович
  • Савушкина Маргарита Константиновна
  • Федосеев Александр Михайлович
  • Хафизов Роберт Рафаэльевич
  • Поляков Игорь Евгеньевич
RU2347294C1
Установка для регенерации радиационно-деградированных экстракционных смесей 2022
  • Скворцов Иван Владимирович
  • Белова Елена Вячеславовна
  • Серенко Юлия Владимировна
RU2781913C1
СПОСОБ ЭКСТРАКЦИОННОЙ ПЕРЕРАБОТКИ ВЫСОКОАКТИВНОГО РАФИНАТА ПУРЕКС-ПРОЦЕССА ДЛЯ ОТРАБОТАННОГО ЯДЕРНОГО ТОПЛИВА АЭС 2003
  • Зильберман Б.Я.
  • Фёдоров Ю.С.
  • Шмидт О.В.
  • Голецкий Н.Д.
  • Паленик Ю.В.
  • Сухарева С.Ю.
  • Кухарев Д.Н.
  • Пузиков Е.А.
  • Логунов М.В.
  • Машкин А.Н.
RU2249266C2
СПОСОБ ЭКСТРАКЦИОННОГО ИЗВЛЕЧЕНИЯ И РАЗДЕЛЕНИЯ ТПЭ И РЗЭ ИЗ АЗОТНОКИСЛЫХ РАСТВОРОВ 1994
  • Зильберман Б.Я.
  • Инькова Е.Н.
  • Федоров Ю.С.
  • Шмидт О.В.
RU2106030C1
СПОСОБ ВНУТРИЦИКЛОВОЙ РЕГЕНЕРАЦИИ ОБОРОТНОГО ЭКСТРАГЕНТА 2009
  • Волк Владимир Иванович
  • Веселов Сергей Николаевич
  • Жеребцов Александр Анатольевич
  • Ревенко Юрий Александрович
  • Кривицкий Юрий Григорьевич
  • Кудинов Константин Григорьевич
RU2397002C1
СПОСОБ ПЕРЕРАБОТКИ ОБЛУЧЕННОГО ЯДЕРНОГО ТОПЛИВА 2007
  • Ревенко Юрий Александрович
  • Кудрявцев Евгений Георгиевич
  • Романовский Валерий Николаевич
  • Федоров Юрий Степанович
  • Шадрин Андрей Юрьевич
  • Бондин Владимир Викторович
  • Бычков Сергей Иванович
  • Ефремов Игорь Геннадьевич
  • Мурзин Андрей Анатольевич
  • Бабаин Василий Александрович
  • Хаперская Анжелика Викторовна
  • Волк Владимир Иванович
RU2366012C2
СПОСОБ ПЕРЕРАБОТКИ КОНЦЕНТРАТА РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ 2015
  • Осьмак Андрей Валерьевич
  • Николаева Ирина Ивановна
  • Горшкова Надежда Васильевна
RU2595672C1
ЭКСТРАКЦИОННАЯ СМЕСЬ ДЛЯ ИЗВЛЕЧЕНИЯ ТПЭ И РЗЭ ИЗ ВЫСОКОАКТИВНОГО РАФИНАТА ПЕРЕРАБОТКИ ОЯТ АЭС И СПОСОБ ЕЁ ПРИМЕНЕНИЯ (ВАРИАНТЫ) 2016
  • Голецкий Николай Дмитриевич
  • Зильберман Борис Яковлевич
  • Мясоедов Борис Федорович
  • Наумов Андрей Александрович
  • Романовский Валерий Николаевич
RU2623943C1
СПОСОБ РЕГЕНЕРАЦИИ ДЕГРАДИРОВАВШЕГО ОБОРОТНОГО ЭКСТРАГЕНТА 2011
  • Блажева Ирина Владимировна
  • Голецкий Николай Дмитриевич
  • Зильберман Борис Яковлевич
  • Смирнов Игорь Валентинович
  • Шадрин Андрей Юрьевич
RU2473144C1
СПОСОБ ЭКСТРАКЦИОННОГО ИЗВЛЕЧЕНИЯ УРАНА И ПЛУТОНИЯ 2012
  • Гаврилов Петр Михайлович
  • Ревенко Юрий Александрович
  • Алексеенко Сергей Николаевич
  • Алексеенко Владимир Николаевич
  • Бондин Владимир Викторович
  • Кривицкий Юрий Григорьевич
  • Волк Владимир Иванович
  • Веселов Сергей Николаевич
  • Двоеглазов Константин Николаевич
RU2513040C2

Реферат патента 2023 года СПОСОБ ПЕРЕРАБОТКИ ОТРАБОТАВШЕГО ЭКСТРАГЕНТА, СОДЕРЖАЩЕГО ТРИБУТИЛФОСФАТ

Изобретение относится к технологии переработки радиоактивных отходов, в частности загрязненной радиоактивными примесями отработавшей экстракционной смеси на основе трибутилфосфата в инертном разбавителе. Способ переработки отработавшей экстракционной смеси на основе трибутилфосфата включает термическую обработку экстракционной смеси в присутствии продукта разложения трибутилфосфата - двукратного мольного избытка оборотной фосфорной кислоты при температуре 190÷210°С в течение 10÷30 минут. Изобретение позволяет полностью разрушить структуру трибутилфосфата при температуре 190°-210°С. 3 табл.

Формула изобретения RU 2 791 103 C1

Способ переработки отработавшей экстракционной смеси на основе трибутилфосфата, содержащей радиоактивные примеси, прямым термическим разложением с последующим охлаждением реакционной смеси и разделением фаз органического раствора и фосфорной кислоты, содержащей радиоактивные примеси, отличающийся тем, что термическую обработку экстракционной смеси проводят в присутствии продукта разложения трибутилфосфата -двукратного мольного избытка оборотной фосфорной кислоты при температуре 190÷210°С в течение 10-30 минут.

Документы, цитированные в отчете о поиске Патент 2023 года RU2791103C1

US 4039468 A1, 02.08.1977
СПОСОБ ЗАХОРОНЕНИЯ ОТРАБОТАННОГО ОРГАНИЧЕСКОГО РАДИОАКТИВНОГО ЭКСТРАГЕНТА 2007
  • Гаврилов Петр Михайлович
  • Косарева Инесса Михайловна
  • Ананьев Алексей Владимирович
  • Савушкина Маргарита Константиновна
  • Федосеев Александр Михайлович
  • Хафизов Роберт Рафаэльевич
  • Поляков Игорь Евгеньевич
RU2347294C1
СПОСОБ ПОЛУЧЕНИЯ СОВМЕСТНОГО РАСТВОРА U И Pu 2014
  • Зильберман Борис Яковлевич
  • Голецкий Николай Дмитриевич
  • Пузиков Егор Артурович
  • Кудинов Александр Станиславович
  • Федоров Юрий Степанович
  • Сытник Леонид Васильевич
  • Сапрыкин Владимир Филиппович
RU2561065C1
RU 2075434 C1, 20.03.1997
ШТАММ МИКРОМИЦЕТА Trichoderma hamatum, ОБЛАДАЮЩИЙ АНТИБАКТЕРИАЛЬНОЙ АКТИВНОСТЬЮ В ОТНОШЕНИИ ВОЗБУДИТЕЛЯ СИБИРСКОЙ ЯЗВЫ Bacillus anthracis 2014
  • Лиховидов Владимир Емельянович
  • Маринин Леонид Иванович
  • Юскевич Виктория Викторовна
  • Володина Лариса Александровна
  • Шишкова Нина Александровна
  • Храмов Михаил Владимирович
  • Быстрова Елена Владимировна
  • Новикова Наталья Михайловна
RU2558293C1
JP 2012198103 A, 18.10.2012.

RU 2 791 103 C1

Авторы

Алексеенко Владимир Николаевич

Аксютин Павел Викторович

Барцева Юлия Валерьевна

Кузьмин Владимир Иванович

Кузьмин Дмитрий Владимирович

Гудкова Наталья Владимировна

Даты

2023-03-02Публикация

2022-05-30Подача