СПОСОБ КОНТРОЛЯ ТРУБОПРОВОДА С ИСПОЛЬЗОВАНИЕМ ЭЛЕКТРОМАГНИТНО-АКУСТИЧЕСКОЙ ТЕХНОЛОГИИ Российский патент 2023 года по МПК G01N29/04 

Описание патента на изобретение RU2794338C2

Изобретение относится к области неразрушающего контроля технического состояния нефтегазопроводов и нефтепродуктопроводов ультразвуковым методом с использованием электромагнитно-акустических преобразователей (ЭМАП) и может быть использовано в дефектоскопах различных конструкций, работа которых основана на технологиях, использующих прямое и обратное электромагнитно-акустическое преобразование.

Как правило известные способы для контроля трубопроводов ультразвуковым методом с использованием электромагнитно-акустических преобразователей реализованы в устройствах, содержащих схему расположения ЭМАП, в которой ЭМАП формируют и принимают ультразвуковые волны, распространяющиеся под углом к поверхности исследуемого тела, а также поверхностные или нормальные (резонансные) ультразвуковые волны, при этом:

- эти ЭМАП работают каждый на излучение и прием;

- эти ЭМАП работают попарно, один работает только на излучение, а другой только на прием.

Недостатком таких способов является то, что при использовании таких схем расположения ЭМАП можно детектировать трещиноподобные дефекты, расположенные под маленькими углами по отношению к направлению, перпендикулярному распространению ультразвуковой волны. Величина этого угла может быть от -10 до 10°.

Ниже описан принцип работы данных устройств, лежащий в основе известных способов неразрушающего контроля трубопроводов с использованием ЭМАП.

С помощью ЭМАП в стенке трубы, намагниченной в заданном направлении магнитной индукции, образуется ультразвуковая волна. Эта волна может быть направленной под углом к поверхности. Также это может быть нормальная или поверхностная волна. Такие волны можно сформировать, например, с помощью ЭМАП с индуктором в виде меандра. Тип и параметры волн, направленных под углом к поверхности, а также поверхностных волн, определяется соотношением геометрических параметров индуктора и частоты подаваемого электрического сигнала на излучающий ЭМАП. Тип и параметры нормальных волн определяются соотношением геометрических параметров индуктора, частоты подаваемого электрического сигнала на излучающий ЭМАП и толщины стенки трубы. На тип и параметры волн, излучаемых ЭМАП, так же влияют параметры магнитного поля, вводимого в стенку трубы. ЭМАП такого типа излучает ультразвуковую волну, распространяющуюся в определенном направлении по телу трубы.

В случае наличия дефекта типа «трещина» ультразвуковая волна отражается от него и попадает в приемный ЭМАП (эхо-метод).

В связи с тем, что ультразвуковая волна отражается в соответствии с законами геометрической оптики, т.е. угол падения равен углу отражения, при ориентации дефекта, расположенного под достаточно большим углом к направлению, перпендикулярному направлению распространения ультразвуковой волны, отраженная от дефекта ультразвуковая волна может не попасть в приемный индуктор, а, следовательно, не будет зарегистрирована.

Дефектоскопы, использующие способ контроля, аналогичный вышеописанному, не способны видеть трещиноподобные дефекты, расположенные под достаточно большими углами относительно направления, перпендикулярного направлению распространения ультразвуковой волны (превышающие по модулю 10°). При этом введение дополнительных датчиков, работающих на излучение, формирующих ультразвуковую волну, направленную под другими углами, приведет к значительному увеличению расхода энергии, что является проблемой для дефектоскопии. Таким образом часть трещиноподобных дефектов может быть не выявлена, для их выявления потребуются дополнительные методы контроля. Для увеличения количества обнаружения трещиноподобных дефектов встает вопрос об увеличении углов расположения дефектов, при которых возможно их детектирование.

Известна система ультразвуковой дефектоскопии трубопровода [см. патент на полезную модель № RU 102810 от 10.03.2011], в которой реализован способ ультразвуковой дефектоскопии, при котором два двунаправленных ЭМАП размещены симметрично по обе стороны от образующей трубопровода в зоне от 3-х до 9-ти часов и перемещаются вдоль трубопровода. Они излучают ультразвуковые волны, направленные по окружности и регистрируют их. Определение положения дефекта на окружности происходит при обработке сигналов, полученных при регистрации ультразвуковой волны, отраженной от дефектов, тем ЭПАМ, который ее же и сгенерировал, и волны, отраженной от дефекта, сгенерированной другим ЭМАП.

Недостатком данного способа является то, что при данном способе возможно выявить только дефекты, расположенные под небольшими углами относительно образующей трубы. Кроме того, данная схема прозвучивания очевидно предполагает, что диагностика ведется нормальными или поверхностными волнами. В случае, если диагностика ведется нормальными (резонансными) волнами, например, волнами Лэмба, будут присутствовать ограничения, связанные с толщиной стенки трубы, в особенности, возможные ее изменения в процессе диагностики. В случае, если диагностика ведется поверхностными волнами, например, волнами Релея, то выявлены будут только дефекты, выходящие на одну поверхность трубы.

Известна система ультразвуковой дефектоскопии трубопровода [см. патент на полезную модель № RU 108627 от 20.09.2011], в которой реализован способ ультразвуковой дефектоскопии, при котором двунаправленный датчик ЭМАП излучает рэлеевские ультразвуковые волны по окружности трубопровода. Дефект обнаруживается эхо-методом, регистрируется отраженная от дефекта ультразвуковая волна этим же ЭМАП.

Недостатком данного способа является то, что при его осуществлении возможно выявить только дефекты, расположенные под небольшими углами относительно образующей трубы. Кроме того, так как диагностика ведется поверхностными волнами Релея, выявлены будут только дефекты, выходящие на одну поверхность трубы. Также к недостаткам этого метода можно отнести то, что данная система не обеспечивает точное определение местоположения дефекта по окружности трубопровода, а способна определить лишь дефектное сечение.

Совокупность признаков, наиболее близкая к совокупности существенных признаков заявляемого изобретения, присуща способу, реализованному в известном устройстве для неразрушающего контроля стенок ферромагнитных конструктивных элементов [см. патент на изобретение № RU 2413214 от 27.02.2011 г.].

В данном способе, принятом за прототип, ультразвуковые волны (прежде всего нормальные сдвиговые волны) возбуждаются высокочастотной индуктивной катушкой на участке стенки, намагниченном в заданном направлении магнитной индукции, распространяются по траектории, задаваемой ориентацией индуктивной катушки, являющейся передатчиком-преобразователем и принимаемых расположенной на расстоянии от передатчика-преобразователя по меньшей мере одной индуктивной катушки, являющейся приемником-преобразователем, причем направление траектории распространения ультразвуковых волн ориентировано под острым углом к направлению магнитной индукции. Величина этого угла может быть от 10 до 60°, причем приемник-преобразователь размещен сбоку от траектории распространения ультразвуковых волн и направлен на расположенный на ней заданный контролируемый участок.

Данный способ обладает следующими недостатками.

Во-первых, ориентация магнитного поля и передающего индуктора ЭМАП выполнена таким образом, что между направлением магнитного поля и направлением распространения ультразвуковой волны существует некоторый угол, отличный от 0°, что приводит к уменьшению коэффициента прямого электромагнитно-акустического преобразования, следовательно, уменьшает амплитуду излучаемой ультразвуковой волны.

Во-вторых, присутствует ограничение диагностики трубопроводов, связанных с их толщиной, и прежде всего с возможным изменением толщины стенки трубы в процессе диагностики трубопровода. Это связано с механизмом образования нормальных волн. Различные моды нормальных волн формируются только при определенном сочетании толщины стенки трубы и частоты формируемого сигнала. Если толщина стенки трубы меняется, условия формирования изначально используемых мод нормальных волн меняются, а, следовательно, возникают существенные трудности для их генерации.

В-третьих, данный способ применим только с использованием магнитных систем, образующих тангенциально направленное магнитное поле (вектор магнитной индукции направлен преимущественно в направлении образующей или направляющей стенке трубы) и не возможен при использовании магнитных систем, создающих нормальное магнитное поле (вектор магнитной индукции направлен преимущественно перпендикулярно стенке трубы). Таким образом, используемый метод диагностики не является универсальным. Иногда удобнее использовать магнитные системы для нормального ввода, как правило, их конструкция является более компактной и легкой, например, это может быть использовано в ручных дефектоскопах.

В-четвертых, данный способ контроля, а также факт того, что излучающий ультразвуковую волну преобразователь работает только на излучение, позволяет детектировать дефекты только определенной ориентации, при этом не допускается большой разброс углов относительно этого направления.

Описанные недостатки устраняются заявляемым изобретением.

Технический результат изобретения заключается в повышении качества ультразвукового контроля трубопровода без дополнительного увеличения энергозатрат. Данный результат достигается за счет обеспечения возможности детектирования трещиноподобных дефектов, расположенных в большом диапазоне углов относительно направления, перпендикулярного направлению распространения ультразвуковой волны, без введения дополнительных ЭМАП, работающих на излучение, а значит без дополнительного увеличения энергозатрат.

Указанный технический результат достигается в предлагаемом способе контроля трубопровода, согласно которому вдоль стенки трубопровода, намагниченной в заданном направлении вектора магнитной индукции, перемещают по меньшей мере один электромагнитно-акустический преобразователь, излучающий ультразвуковые волны в пределах контролируемой области поверхности стенки трубопровода, распространяющиеся по задаваемой его ориентацией траектории. Принимают ультразвуковые волны, отраженные от дефектов, расположенными на расстоянии от излучающего электромагнитно-акустического преобразователя и перемещаемыми вместе с ним по меньшей мере двумя электромагнитно-акустическими преобразователями, и определяют наличие дефектов в стенках трубопровода. Кроме того принимают ультразвуковые волны, отраженные от трещиноподобных дефектов, расположенных под углами к направлению, перпендикулярному направлению распространения излучаемых ультразвуковых волн, по меньшей мере двумя электромагнитно-акустическими преобразователями, работающими только на прием ультразвуковых волн, расположенными под углом к излучающему электромагнитно-акустическому преобразователю и смещенными относительно оси, направленной вдоль распространения ультразвуковых волн и проходящей через его середину.

В частных случаях согласно способу:

- перемещают по меньшей мере один электромагнитно-акустический преобразователь, излучающий ультразвуковые волны в пределах контролируемой области внутренней или наружной поверхности стенки трубопровода, распространяющиеся по задаваемой его ориентацией траектории;

- излучение ультразвуковых волн осуществляют электромагнитно-акустическим преобразователем, который может быть однонаправленным или двунаправленным;

- излучение ультразвуковых волн осуществляют однонаправленным электромагнитно-акустическим преобразователем, при этом вместе с ним перемещают по меньшей мере два электромагнитно-акустических преобразователя, работающих только на прием ультразвуковых волн;

- излучение ультразвуковых волн осуществляют двунаправленным электромагнитно-акустическим преобразователем, при этом вместе с ним перемещают по меньшей мере четыре электромагнитно-акустических преобразователя, работающих только на прием ультразвуковых волн;

- ультразвуковые волны, отраженные от трещиноподобных дефектов, принимают одновременно электромагнитно-акустическими преобразователями, работающими только на прием, и излучающим электромагнитно-акустическим преобразователем или только электромагнитно-акустическими преобразователями, работающими только на прием;

- перемещают по меньшей мере один электромагнитно-акустический преобразователь, излучающий ультразвуковые волны в пределах контролируемой области поверхности стенки трубопровода, распространяющиеся по задаваемой его ориентацией траектории, при этом излучаемые ультразвуковые волны могут быть направленными под углом к поверхности или нормальными, или поверхностными;

- намагничивание стенки трубопровода осуществляют магнитной системой диагностического устройства, которая может быть выполнена с использованием постоянных магнитов или электромагнитов и перемещаться вместе с излучающим электромагнитно-акустическим преобразователем;

- намагничивание стенки трубопровода осуществляют нормальным или тангенциальным намагничиванием;

- вдоль стенки трубопровода, намагниченной тангенциально, перемещают по меньшей мере один электромагнитно-акустический преобразователь, излучающий ультразвуковые волны в пределах контролируемой области поверхности стенки трубопровода, распространяющиеся по задаваемой его ориентацией траектории, при этом излучающий электромагнитно-акустический преобразователь размещают так, чтобы направление намагничивания стенки трубопровода было параллельно направлению распространения ультразвуковых волн.

Сущность заявляемого способа поясняется чертежами.

На фиг. 1 приведен пример осуществления способа диагностики трещиноподобных дефектов, расположенных под большими углами по отношению к направлению, перпендикулярному направлению распространения ультразвуковой волны, при этом дефекты расположены преимущественно в направлении продольной оси трубы. В данном примере способ осуществляется с использованием двунаправленного ЭМАП, к которому добавлены четыре ЭМАП, работающих только на прием, с использованием магнитной системы, создающей в стенке трубы тангенциальное магнитное поле.

На фиг. 2 приведен пример осуществления способа диагностики трещиноподобных дефектов, расположенных под большими углами по отношению к направлению, перпендикулярному направлению распространения ультразвуковой волны, расположенных преимущественно в направлении, перпендикулярном продольной оси трубы. В данном примере способ осуществляется с использованием двунаправленного ЭМАП, к которому добавлены четыре ЭМАП, работающих только на прием, с использованием магнитной системы, создающей в стенке трубы тангенциальное магнитное поле.

На фиг. 3 приведен пример осуществления способа диагностики трещиноподобных дефектов, расположенных под большими углами по отношению к направлению, перпендикулярному направлению распространения ультразвуковой волны, расположенных преимущественно в направлении продольной оси трубы. В данном примере способ осуществляется с использованием двунаправленного ЭМАП, к которому добавлены четыре ЭМАП, работающих только на прием, с использованием магнитной системы, создающей в стенке трубы нормальное магнитное поле.

На фиг. 4 приведен пример осуществления способа диагностики трещиноподобных дефектов, расположенных под большими углами по отношению к направлению, перпендикулярному направлению распространения ультразвуковой волны, расположенных преимущественно в направлении, перпендикулярном продольной оси трубы. В данном примере способ осуществляется с использованием двунаправленного ЭМАП, к которому добавлены четыре ЭМАП, работающих только на прием, с использованием магнитной системы, создающей в стенке трубы нормальное магнитное поле.

На фиг. 5 приведен пример осуществления способа диагностики трещиноподобных дефектов, расположенных под большими углами по отношению к направлению, перпендикулярному направлению распространения ультразвуковой волны, расположенных преимущественно в направлении продольной оси трубы. В данном примере способ осуществляется с использованием однонаправленного ЭМАП, к которому добавлены два ЭМАП, работающих только на прием, с использованием магнитной системы, создающей в стенке трубы тангенциальное магнитное поле.

На фиг. 6 приведен пример осуществления способа диагностики трещиноподобных дефектов, расположенных под большими углами по отношению к направлению, перпендикулярному направлению распространения ультразвуковой волны, расположенных преимущественно в направлении, перпендикулярном продольной оси трубы. В данном примере способ осуществляется с использованием однонаправленного ЭМАП, к которому добавлены два ЭМАП, работающих только на прием, с использованием магнитной системы, создающей в стенке трубы тангенциальное магнитное поле.

На фиг. 7 приведен пример осуществления способа диагностики трещиноподобных дефектов, расположенных под большими углами по отношению к направлению, перпендикулярному направлению распространения ультразвуковой волны, расположенных преимущественно в направлении продольной оси трубы. В данном примере способ осуществляется с использованием однонаправленного ЭМАП, к которому добавлены два ЭМАП, работающих только на прием, с использованием магнитной системы, создающей в стенке трубы нормальное магнитное поле.

На фиг. 8 приведен пример осуществления способа диагностики трещиноподобных дефектов, расположенных под большими углами по отношению к направлению, перпендикулярному направлению распространения ультразвуковой волны, расположенных преимущественно в направлении, перпендикулярном продольной оси трубы. В данном примере способ осуществляется с использованием однонаправленного ЭМАП, к которому добавлены два ЭМАП, работающих только на прием, с использованием магнитной системы, создающей в стенке трубы нормальное магнитное поле.

На чертежах приняты следующие обозначения:

1 - ЭМАП, излучающий ультразвуковые волны;

2 - ЭМАП, работающие только на прием ультразвуковых волн;

3 - трещиноподобный дефект;

4 - направление распространения излучаемой ультразвуковой волны;

5 - направление распространения отраженной от дефекта ультразвуковой волны;

6 - продольная ось трубы;

В - направление намагничивания стенки трубы.

Способ контроля трубопровода с использованием электромагнитно-акустической технологии осуществляют следующим образом.

По намагниченной тангенциально (вектор магнитной индукции направлен преимущественно в направлении образующей или направляющей стенки трубы) или нормально (вектор магнитной индукции направлен преимущественно перпендикулярно стенке трубы) стенки трубы по ее наружной поверхности или по ее внутренней поверхности перемещают ЭМАП, формирующий направленную под углом к поверхности или нормальную, или поверхностную волну. Этот излучающий ЭМАП также может быть и приемником (ЭМАП совмещенного типа). При этом магнитная система может быть образована с использованием постоянных магнитов или электромагнитов и перемещаться вместе с перемещением ЭМАП. Причем, при использовании тангенциального намагничивания стенки трубы ЭМАП, формирующий ультразвуковую волну, размещают так, чтобы направление намагничивания стенки трубы было параллельно направлению распространения ультразвуковой волны. Одновременно с ЭМАП, излучающим ультразвуковую волну (или излучающим и принимающем ультразвуковую волну) перемещают два и более ЭМАП, которые работают только на прием ультразвуковой волны, которые должны быть расположены под некоторыми углами к излучающему и смещенные относительно оси, направленной вдоль распространения ультразвуковой волны и проходящей через середину ЭМАП, ее излучающего. Значение диапазона этих углов для диагностики с использованием тангенциального магнитного поля составляет от 10 до 60°, для диагностики с использованием нормального магнитного поля - от 10 до 90°.

Таким образом, при ориентации дефекта, расположенного под достаточно большим углом к направлению, перпендикулярному направлению распространения ультразвуковой волны, исключается возможность пропуска отраженной от дефекта ультразвуковой волны, при котором она может не попасть в приемный индуктор, и, следовательно, не будет зарегистрирована.

Оптимальное число ЭМАП, работающих только на прием, которые требуется добавить к излучающему двунаправленному ЭМАП (излучающему ультразвуковую волну в двух противоположных направлениях), равно четырем. Это связано с тем, что дефекты могут быть обнаружены одновременно с использованием ультразвуковых волн, генерируемых двунаправленным ЭМАП в противоположных направлениях, и для каждого из этих направлений дефекты, расположенные под положительными углами относительно направления, перпендикулярного направлению распространения излучаемой ультразвуковой волны и дефекты, расположенные под отрицательными углами относительно направления, перпендикулярного направлению распространения излучаемой ультразвуковой волны, детектируются двумя, по разному расположенными, ЭМАП, работающими только на прием (фиг. 1-4).

Оптимальное число ЭМАП, работающих только на прием, которое требуется добавить к излучающему однонаправленному ЭМАП (излучающего ультразвуковую волну в одном направлении), равно двум. Это связано с тем, что дефекты, расположенные под положительными углами относительно направления, перпендикулярного направлению распространения ультразвуковой волны и дефекты, расположенные под отрицательными углами относительно направления, перпендикулярного направлению распространения ультразвуковой волны, детектируются двумя, по-разному расположенными ЭМАП, работающими только на прием (фиг. 5-8).

Параметры используемых для диагностики ЭМАП должны быть выбраны исходя из типа и параметров волны, с помощью которой производится диагностика с учетом особенностей формирования этой волны в магнитном поле в стенке трубы (тангенциальном или нормальном).

Похожие патенты RU2794338C2

название год авторы номер документа
Устройство для контроля трубопровода с использованием электромагнитно-акустической технологии 2022
  • Залеткин Сергей Викторович
  • Лексашов Олег Борисович
RU2790942C1
СПОСОБ АВТОМАТИЗИРОВАННОЙ НАРУЖНОЙ ДИАГНОСТИКИ ТРУБОПРОВОДА И АВТОМАТИЗИРОВАННЫЙ ДИАГНОСТИЧЕСКИЙ КОМПЛЕКС ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2021
  • Лексашов Олег Борисович
  • Гусев Александр Сергеевич
  • Юдин Максим Иванович
RU2757203C1
Система неразрушающего контроля методом ToFD (варианты) 2021
  • Тужилкин Сергей Александрович
  • Межуев Алексей Валентинович
RU2785788C1
НЕЛИНЕЙНЫЙ МОДУЛЯЦИОННЫЙ СПОСОБ МОНИТОРИНГА СОСТОЯНИЯ ПРОТЯЖЕННЫХ КОНСТРУКЦИЙ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2022
  • Рыбин Игорь Александрович
RU2799241C1
СПОСОБ ДЕФЕКТОМЕТРИИ ПРОКАТНЫХ ЛИСТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1998
  • Чумаков С.М.
  • Кириков А.В.
  • Щеголев А.П.
  • Игнатов В.М.
  • Забродин А.Н.
  • Макаренков К.Н.
RU2123401C1
Способ определения подверженности металлопроката изгибу и устройство для его осуществления 2021
  • Цыпуштанов Александр Григорьевич
RU2780147C1
Способ измерения толщины стенки труб из ферромагнитных сплавов и устройство для его осуществления 2022
  • Цыпуштанов Александр Григорьевич
RU2790307C1
УСТРОЙСТВО ДЛЯ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ ПРОЧНОСТНЫХ ХАРАКТЕРИСТИК МАТЕРИАЛА ДВИЖУЩЕГОСЯ ЛИСТОВОГО ПРОКАТА 2003
  • Забродин А.Н.
  • Кириков А.В.
  • Паврос С.К.
RU2231055C1
ЭЛЕКТРОМАГНИТНО-АКУСТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ 2007
  • Самокрутов Андрей Анатольевич
  • Шевалдыкин Виктор Гаврилович
  • Бобров Владимир Тимофеевич
  • Сергеев Константин Леонидович
  • Алехин Сергей Геннадиевич
RU2343475C1
БЛОК КАТУШЕК ИНДУКТИВНОСТИ С ПОСТОЯННЫМ МАГНИТОМ 2016
  • Авилов Дмитрий Евгеньевич
RU2638953C2

Иллюстрации к изобретению RU 2 794 338 C2

Реферат патента 2023 года СПОСОБ КОНТРОЛЯ ТРУБОПРОВОДА С ИСПОЛЬЗОВАНИЕМ ЭЛЕКТРОМАГНИТНО-АКУСТИЧЕСКОЙ ТЕХНОЛОГИИ

Изобретение относится к области неразрушающего контроля технического состояния нефтегазопроводов и нефтепродуктопроводов ультразвуковым методом с использованием электромагнитно-акустических преобразователей. Сущность изобретения заключается в том, что при перемещении вдоль намагниченной стенки трубопровода электромагнитно-акустическим преобразователем периодически излучают ультразвуковые волны, при этом вместе с ним перемещают по меньшей мере два электромагнитно-акустических преобразователя, работающих только на прием, расположенных под углом к излучающему и смещенных относительно оси, направленной вдоль распространения ультразвуковых волн и проходящей через его середину, и принимают этими электромагнитно-акустическими преобразователями ультразвуковые волны, отраженные от трещиноподобных дефектов, расположенных под углами к направлению, перпендикулярному направлению распространения излучаемых ультразвуковых волн. Технический результат - повышение качества ультразвукового контроля трубопровода без дополнительного увеличения энергозатрат. 4 з.п. ф-лы, 8 ил.

Формула изобретения RU 2 794 338 C2

1. Способ контроля трубопровода, заключающийся в том, что вдоль стенки трубопровода, намагниченной в заданном направлении вектора магнитной индукции, перемещают по меньшей мере один электромагнитно-акустический преобразователь, излучающий ультразвуковые волны в пределах контролируемой области поверхности стенки трубопровода, распространяющиеся по задаваемой его ориентацией траектории, при этом намагничивание стенки трубопровода осуществляют магнитной системой диагностического устройства, которая может быть выполнена с использованием постоянных магнитов или электромагнитов и которую перемещают вместе с излучающим электромагнитно-акустическим преобразователем, а излучаемые ультразвуковые волны могут быть направленными под углом к поверхности или нормальными, или поверхностными, и принимают ультразвуковые волны, отраженные от трещиноподобных дефектов, расположенными на расстоянии от излучающего электромагнитно-акустического преобразователя и перемещаемыми вместе с ним по меньшей мере двумя электромагнитно-акустическими преобразователями, работающими только на прием, при этом ультразвуковые волны, отраженные от трещиноподобных дефектов, принимают одновременно электромагнитно-акустическими преобразователями, работающими только на прием, и излучающим электромагнитно-акустическим преобразователем или только электромагнитно-акустическими преобразователями, работающими только на прием, далее определяют наличие дефектов в стенках трубопровода, отличающийся тем, что намагничивание стенки трубопровода осуществляют нормальным или тангенциальным намагничиванием, при тангенциальном намагничивании стенки трубопровода излучающий электромагнитно-акустический преобразователь размещают так, чтобы направление намагничивания стенки трубопровода было параллельно направлению распространения ультразвуковых волн, принимают ультразвуковые волны, отраженные от трещиноподобных дефектов, расположенных под углами к направлению, перпендикулярному направлению распространения излучаемых ультразвуковых волн, по меньшей мере двумя электромагнитно-акустическими преобразователями, работающими только на прием ультразвуковых волн, расположенными под углом от 10 до 60° при тангенциальном намагничивании стенки трубопровода и от 10 до 90° при нормальном намагничивании стенки трубопровода к излучающему электромагнитно-акустическому преобразователю и смещенными относительно оси, направленной вдоль распространения ультразвуковых волн и проходящей через середину излучающего электромагнитно-акустического преобразователя.

2. Способ контроля трубопровода по п. 1, отличающийся тем, что перемещают по меньшей мере один электромагнитно-акустический преобразователь, излучающий ультразвуковые волны в пределах контролируемой области внутренней или наружной поверхности стенки трубопровода, распространяющиеся по задаваемой его ориентацией траектории.

3. Способ контроля трубопровода по п. 1, отличающийся тем, что излучение ультразвуковых волн осуществляют электромагнитно-акустическим преобразователем, который может быть однонаправленным или двунаправленным.

4. Способ контроля трубопровода по п. 3, отличающийся тем, что излучение ультразвуковых волн осуществляют однонаправленным электромагнитно-акустическим преобразователем, при этом вместе с ним перемещают по меньшей мере два электромагнитно-акустических преобразователя, работающих только на прием ультразвуковых волн.

5. Способ контроля трубопровода по п. 3, отличающийся тем, что излучение ультразвуковых волн осуществляют двунаправленным электромагнитно-акустическим преобразователем, при этом вместе с ним перемещают по меньшей мере четыре электромагнитно-акустических преобразователя, работающих только на прием ультразвуковых волн.

Документы, цитированные в отчете о поиске Патент 2023 года RU2794338C2

Применение ртути в качестве рабочей жидкости гидропередачи 1948
  • Фищук В.А.
SU87532A1
ЭМА ПРЕОБРАЗОВАТЕЛЬ 2006
  • Подолян Александр Александрович
RU2327152C2
https://web.archive.org/web/20210307112352/https://www.ntcexpert.ru/562-jelektromagnitno-akusticheskie-preobrazovateli
US 6155117 A, 05.12.2000
A V Mikhaylov, Yu L Gobov, Ya G Smorodinskii and G S Korzunin, Electromagnetic acoustic transducers for non-destructive testing of main pipelines,

RU 2 794 338 C2

Авторы

Залеткин Сергей Викторович

Лексашов Олег Борисович

Даты

2023-04-17Публикация

2021-08-25Подача