Способ прогнозирования исходов COVID-19 Российский патент 2024 года по МПК G01N33/53 G01N33/49 A61B5/00 

Описание патента на изобретение RU2830374C1

Короновирусная инфекция, вызванная вирусом SARS-CoV-2, привела к пандемии в 2020 году (Wu F., Zhao S., Yu B. et al. A new coronavirus associated with human respiratory disease in China // Nature. - 2020. - 579 (7798). - P. 265-269). В настоящее время относительно патогенеза инфекции, вызванной SARS-CoV-2, понятно, что в основе разнообразия клинических проявлений лежит индивидуальная иммунная реактивность организма. Клиническая картина COVID-19 складывается из особенностей ответа иммунной системы человека на вирус, и может варьировать от бессимптомных форм до крайне тяжелого течения с высокой вероятностью летального исхода [Chen G., Wu D., Guo W., Cao Y., Huang D., Wang H., et al. Clinical and immunologic features in severe and moderate Coronavirus Disease 2019. J Clin Invest. 2020; 130(5): 2620-2629]. Однозначного ответа на вопрос, чем обусловлена вариативность клинической картины у разных пациентов, до сих пор не существует. Выдвигается множество теорий относительно патогенеза инфекции SARS-CoV-2, однако уже сейчас понятно, что в основе разнообразия клинических проявлений лежит индивидуальная иммунная реактивность организма.

Иммунопатогенез COVID-19 связан с развитием несбалансированного иммунного ответа на вирус с недостаточным синтезом интерферона в начале заболевания, но с последующей гиперпродукцией провоспалительных цитокинов. На начальной стадии инфекции SARS-CoV-2 наблюдается увеличение концентрации IL-1β, IL-7, IL-8, IL-9, IL-10, G-CSF, GM-CSF, IFN-γ, IP10, MCP1, MIP1A/CCL3, MIP1B/CCL4, PDGF и его рецепторов PDGFRα, ФНО-α и VEGFB, характеризующих развитие так называемого «цитокинового шторма», служащего причиной гипервоспалительной реакции в легких, а затем полиорганной недостаточности и гибели больных (Ragab D., Eldin H. S., Taeimah M., et al. The COVID-19 Cytokine Storm; What We Know So Far //Front Immunol. - 2020. - 11. - P. 1446. Zhong-yong C, Wei-bin Y, Qiang W, et al. Clinical significance of serum hs-CRP, IL-6, and PCT in diagnosis and prognosis of patients with COVID-19 // Drugs Clin . - 2020. - 35. - P. 417-420). У большинства тяжелых больных также была отмечена лимфопения со снижением уровней CD4+, CD8+ T-лимфоцитов, В-лимфоцитов и НК клеток, лейкоцитоз за счет увеличения числа нейтрофильных гранулоцитов на фоне снижения содержания моноцитов, эозинофилов и базофилов. Видимо, при COVID-19 решающую роль в дисбалансе реакций врожденного иммунитета играет недостаточный синтез IFN на ранних стадиях инфекции. У части пациентов показано развитие вторичных воспалительных реакций, начиная с этапа формирования адаптивного иммунитета.

Кроме того, SARS-CoV-2, способен ухудшать фагоцитарную способность макрофагов, что может сделать пациентов с SARS склонными к вторичным легочным инфекциям (Болдырева М.Н. Вирус SARS-CoV-2 и другие эпидемические коронавирусы: патогенетические и генетические факторы развития инфекций // Иммунология. - 2020. - 41 (3). - С. 197-205).

Вместе с тем, была показана зависимость уровней цитокинов и хемокинов от степени тяжести пациентов с COVID-19: у пациентов с легкой формой заболевания уровень IL-1β IFN-γ, CXCL10/IP-10 и CCL2/MCP-1 был высоким, но еще более высоким был уровень Г-КСФ, CXCL10/IP-10, CCL2/MCP-1 и CCL3/MIP-1A у пациентов (Huang S. Clinical features of patients infected with novel 2019 coronavirus in Wuhan, China. // The Lancet. - 2020. - 395. - P. 497-506). Также у большинства тяжелых больных была отмечена лимфопения со снижением уровней CD4+, CD8+ T-лимфоцитов, В-лимфоцитов и НК клеток, а лейкоцитоз за счет увеличения числа нейтрофильных гранулоцитов на фоне снижения содержания моноцитов, эозинофилов и базофилов. Защитная роль антител при COVID-19 подвергается сомнению. Опубликованные исследования свидетельствуют, что у больных с более тяжелыми проявлениями COVID-19 обнаружены более высокие общие титры антител и титры антител класса IgG против SARS-CoV-2, и это оказалось связано с более тяжелыми исходами заболевания (Zhao J., Yuan Q., Wang H., et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease // Clin. Infect. Dis. - 2020. - 71 (16). - P. 2027-2034).

Установлено, что после перенесенного SARS-CoV, доля специфических CD8+Т-клеток памяти превышала таковую по сравнению с CD4+Т-клетками памяти, а вирусспецифические Т-лимфоциты сохранялись в течение 6-11 лет, что свидетельствует о том, что Т-клетки могут обеспечивать длительный иммунитет (Абакушина У.В. Иммунологические аспекты коронавирусной болезни, вызванной SARS-CoV-2 // Гены and клетки. -2020. - XV(3). - С.14-21). Защитная роль антител при COVID-19 подвергается сомнению. Опубликованные исследования свидетельствуют, что у больных с более тяжелыми проявлениями COVID-19 обнаружены более высокие общие титры антител и титры антител класса IgG против SARS-CoV-2, и это оказалось связано с более тяжелыми исходами заболевания [Румянцев А.Г. Коронавирусная инфекция COVID-19. Научные вызовы и возможные пути лечения и профилактики заболевания. Российский журнал детской гематологии и онкологии. - 2020. - 7(3). - С.47-53]. В то же время в эксперименте показано, что после инфекции SARS у мышей вирус-специфические Т-клетки памяти могут обеспечивать протективный иммунитет в отсутствии SARS-CoV-специфических CD4+T-клеток памяти или В-клеток памяти. Установлено, что несмотря на отсутствие вирус-специфического ответа, опосредованного B-клетками памяти, SARS CoV-специфические T-клетки памяти персистируют у пациентов, выздоровевших от SARS до 6 лет после заражения. После перенесенного SARS-CoV, доля специфических CD8+Т-клеток памяти превышала таковую по сравнению с CD4+Т-клетками памяти, а вирусспецифические Т-лимфоциты сохранялись в течение 6-11 лет, что свидетельствует о том, что Т-клетки могут обеспечивать длительный иммунитет [Vabret N., Britton, G.J., Gruber C., Hegde S., Kim J., Kuksin M., et al. The Sinai Immunology Review Project, Immunology of COVID-19: current state of the science, Immunity. 2020; 52(6): 910-41].

Проведенными исследованиями по научно-медицинской и патентной литературе найдены различные способы прогнозирования тяжелого течения и исходов COVID-19, однако они не затрагивают главную причину летального исхода COVID-19 - иммунную систему.

Близкий к заявленному известен способ прогнозирования исхода COVID-19, который заключается в определении концентрации цитокинов в плазме крови [Способ прогнозирования исхода острого заболевания, вызванного новой коронавирусной инфекцией COVID-19 (RU 2 766 347), опубликован 2022]. Способ обеспечивает возможность прогнозирования исхода острого заболевания, вызванного коронавирусной инфекцией COVID-19, по концентрации цитокинов в плазме крови. До начала терапии определяют в плазме крови концентрацию интерлейкина-6 (ИЛ-6) и интерлейкина-18 (ИЛ-18). На первой стадии оценивают концентрацию ИЛ-18, при значении которой равной или более 81,6 пг/мл прогнозируют летальный исход. При значении менее 81,6 пг/мл проводят вторую стадию, на которой оценивают в плазме крови концентрацию ИЛ-6, при значении которой равной или более 23,5 пг/мл прогнозируют летальный исход, менее 23,5 пг/мл - прогнозируют выздоровление.

Недостатком данного метода является достаточно редкий анализ определения ИЛ-18 и применение авторами метода построения деревьев в программе JMP 16.0 для совместного определения двух маркеров ИЛ-6 и ИЛ-18. Эта программа может отсутствовать в больнице. Кроме того, определение уровня цитокинов является длительным и трудоемким процессом, а также экономически затратным.

Известен способ прогнозирования исхода вирусной пневмонии при COVID-19 [Способ прогнозирования исхода вирусной пневмонии при COVID-19 (RU 2 764002), опубликован 2022]. Способ обеспечивает возможность повышения точности прогноза исхода вирусной пневмонии при COVID-19 за счет оценки комплекса диагностически значимых показателей: уровня оксигенации, общего белка и мочевины в крови. Проводят определение значений оксигенации, общего белка и мочевины в крови. При значениях SpO2 менее 77,5 без кислородной поддержки, общего белка менее 55,5 г/л, мочевины в крови более или равно 8,98 мМоль/л прогнозируют неблагоприятный исход вирусной пневмонии при COVID-19.

Недостатком данного метода является прогнозирование исхода COVID-19 только на основании общеклинических методов без учета реакции со стороны иммунной системы.

Известен способ оценки неблагоприятного исхода пневмонии при COVID-19, по уровню s-CysC [Способ оценки неблагоприятного исхода пневмонии тяжелого течения, ассоциированной с COVID-19, по уровню s-CysC (RU 2 779581), опубликован 2022]. Способ обеспечивает возможность оценки риска наступления неблагоприятного исхода пневмонии тяжелого течения, ассоциированной с COVID-19, за счет определения уровня s-CysC в крови. Определяют иммунотурбидиметрическим методом концентрации s-CysC в образцах венозной крови, взятых в течение первых 24 часов поступления в отделение реанимации и интенсивной терапии. Если концентрации s-CysC у больных превышают 1,44 мг/л, то прогнозируют неблагоприятный исход пневмонии тяжелого течения, ассоциированной с COVID-19.

Недостатком метода является то, что был изначально сужен круг пациентов с COVID-19 (отделение интенсивной терапии), что уже предполагает, что в этом отделении находятся пациенты в тяжелом и крайне тяжелом состоянии. Кроме того, цистатин С делают не в каждой лаборатории.

Известен способ прогнозирования риска летального исхода у пациентов с тяжелым и среднетяжёлым течением COVID-19 при проведении упреждающей противовоспалительной терапии [Способ прогнозирования риска летального исхода у пациентов с тяжелым и среднетяжёлым течением COVID-19 при проведении упреждающей противовоспалительной терапии (RU 2 770 357), опубликован 2022]. Способ позволяет повысить точность прогнозирования риска летального исхода у пациентов с тяжелым и среднетяжёлым течением COVID-19 при проведении упреждающей противовоспалительной терапии. У пациента определяют наличие кислородной поддержки, концентрацию D-димеров в крови, концентрацию С-реактивного белка в крови и срок терапии. После чего вычисляют значение прогноза риска летального исхода у пациентов с тяжелым и среднетяжёлым течением COVID-19 при проведении упреждающей противовоспалительной терапии по оригинальной формуле, при P≤19,3% вероятность смерти пациента определяют, как низкую, при P≥19,4% вероятность смерти пациента определяют, как высокую.

Недостатком метода является очень сложный математический расчет, в котором необходимо в формулу поставить много определяемых функций и показателей пациентов, что усложняет принятие решений по лечению больных COVID-19.

Задачей данного исследования является способ прогнозирования исхода COVID-19 на основании изучения показателей иммунной системы. Технический результат достигается путем создания математической модели, включающий три достоверных лабораторных показателя: реакция бластной трансформации лимфоцитов (РБТЛ), количество натуральных киллеров (CD 16+), относительное количество лимфоцитов (лф %).

Установлено, что эти показатели являются высоко значимыми критериями для прогнозирования риска летального исхода у пациентов с тяжелым и среднетяжёлым течением COVID-19. Способ является простым, быстровыполнимым, недорогим методом диагностики. Построенная математическая модель может осуществлять прогноз риска летального исхода у пациентов COVID-19, что позволит, с высокой степенью достоверности констатировать исход заболевания.

Способ реализуется следующим образом. Забор крови в объёме 5 мл осуществляют у пациентов в вакуумные пробирки с активатором свертывания ЭДТА («Vacuette»). В крови больного методом проточной цитофлюориметрии определяют уровни РБТЛ, CD 16+, с помощью гематологического анализатора Sysmex XP 300 подсчитываются процент лимфоцитов (лф %). Для прогноза исхода у больных COVID-19 выздоровевших и с летальным исходом, полученные значения показателей РБТЛ, CD 16+, лф (%) подставляют в математическую модель, которая имеет вид:

где у - код группы (исход заболевания: 0 - выздоровление, 1 - смерть), х1 - РБТЛ, х2 - CD16, х3 - лф (%).

Для разработки заявленного способа было обследовано 52 пациента с COVID-19 на базе ГБУЗ «Пензенский областной клинический центр специализированных видов медицинской помощи». В дальнейшем были сформированы 2 группы больных: 38 больных COVID-19 с выздоровлением и 14 больных COVID-19 с летальным исходом.

В двух группах в гепаринизированной крови определяли показатели РБТЛ, CD16+, лф(%). Функциональное состояние Т- лимфоцитов по реакции бластной трансформации (РБТЛ) определяли методом проточной цитофлюориметрии. В качестве индуктора трансформации использовали фитогемагглютинин-М (ФГА, Sigma). Субпопуляцию CD 16+ определяли методом проточной цитофлюориметрии на приборе BD Facs Calibur (США), использовали моноклональные антитела CD3+CD16+CD45+. Определение лф (%) проводили на гематологическом анализаторе Sysmex XP 300, дополнительных реактивов не требуется.

Статистический анализ полученных результатов исследования проводился с помощью пакета прикладных программ «STATISTICA 6.0» (StatSoft Inc., США).

Математическая модель, которая позволяет прогнозировать развитие летального исхода у больных COVID-19 была построена с помощью статистической обработки данных, в результате многофакторного анализа. Для решения поставленной задачи первым этапом многофакторного анализа стала оценка корреляционной связи независимых факторов-предикторов с развитием летального исхода у больных COVID-19.

Для прогнозирования исхода COVID-19 (выздоровление или смерть) был проведен многофакторный анализ по наиболее значимым факторам. Для решения поставленной задачи первым этапом многофакторного анализа стала оценка корреляционной связи независимых факторов-предикторов с исходом заболевания.

Многофакторный анализ параметров был проведен между больными с выздоровлением (n=38) и умершими пациентами (n=14).

Для построения модели характера течения заболевания параметр, обозначающий принадлежность пациента к той или иной группе, условно был закодирован: умершие получили код исхода «1», выздоровевшие - «0».

На первом этапе были проанализированы все изученные иммунологические показатели (табл. 1).

Таблица 1 - Результаты корреляционного анализа

Ранговые корреляции Спирмена
ПД попарно удалены
Перечисленные корреляции значимы на уровне p <0,5000
Пара переменных Число - набл. Спирмена - R t(N-2) p-уров. CD4 & CD16 52 -0,6030 -5,3449 0,0000 CD4 & ИРИ CD4/CD8 52 0,6374 5,8493 0,0000 CD4 & G 52 0,3546 2,6816 0,0099 CD4 & РБТЛ % 52 0,5934 5,2128 0,0000 CD4 & ЛФ% 52 0,4233 3,3038 0,0018 CD4 & НФ% 52 -0,4432 -3,4963 0,0010 CD8 & ИРИ CD4/CD8 52 -0,7368 -7,7066 0,0000 CD8 & ЛФ% 52 0,5117 4,2117 0,0001 CD19 & А 52 0,2759 2,0295 0,0477 CD16 & ИРИ CD4/CD8 52 -0,2922 -2,1608 0,0355 CD16 & РБТЛ % 52 -0,6117 -5,4679 0,0000 CD16 & ЛФ% 52 -0,5668 -4,8643 0,0000 CD16 & НФ% 52 0,4117 3,1942 0,0024 ИРИ CD4/CD8 & Хеми (Max фмлф) 52 0,3593 2,7227 0,0089 РБТЛ % & G 52 0,3177 2,3695 0,0217 РБТЛ % & ЛФ% 52 0,6335 5,7902 0,0000 РБТЛ % & МОН% 52 0,3995 3,0814 0,0033 РБТЛ % & НФ% 52 -0,7315 -7,5866 0,0000 ЛФ% & G 52 0,3192 2,3819 0,0211 ЛФ% & НФ% 52 -0,7179 -7,2928 0,0000 МОН% & А 52 0,3822 2,9247 0,0052 МОН% & G 52 0,3094 2,3004 0,0256 МОН% & НФ% 52 -0,7674 -8,4635 0,0000 МОН% & ЛФ% 52 0,3527 2,6653 0,0103 НФ% & М 52 -0,3147 -2,3440 0,0231 НФ% & G 52 -0,3490 -2,6330 0,0112 Исход & CD4 52 -0,3885 -2,9811 0,0044 Исход & CD16 52 0,5502 4,6589 0,0000 Исход & G 52 -0,3096 -2,3023 0,0255 Исход & РБТЛ % 52 -0,6305 -5,7437 0,0000 Исход & ЛФ% 52 -0,3462 -2,6090 0,0119 Исход & НФ% 52 0,4559 3,6222 0,0007

В дальнейшем были вычленены показатели с высокой достоверностью, с которыми были проведены дальнейшие вычисления. В таблице 2 приведены значимые результаты корреляционного анализа, позволяющего оценить взаимосвязь анализируемых параметров с кодом группы, а также между собой.

Таблица 2 - Результаты корреляционного анализа

Ранговые корреляции Спирмена (Исходные данные)
ПД попарно удалены
Отмеченные корреляции значимы на уровне p <0,05000
Число - набл. Спирмена - R t(N-2) p-уровень Исход & CD16 52 0,550182 4,65888 0,000024 Исход & РБТЛ % 52 -0,630491 -5,74370 0,000001 Исход & ЛФ% 52 -0,346154 -2,60897 0,011947 CD16 & РБТЛ % 52 -0,611717 -5,46786 0,000001 CD16 & ЛФ% 52 -0,566764 -4,86433 0,000012 РБТЛ % & ЛФ% 52 0,633548 5,79015 0,000000

Корреляционный анализ показал наличие достоверных связей между исходом заболевания и факторами: CD16 - заметная прямая (R = 0,5502; p = 0,0000), РБТЛ % - заметная обратная (R = -0,6305; p = 0,0000); лф(%) - умеренная обратная (R = -0,3462; p = 0,0119). Также существуют корреляционные связи между факторами (достоверные связи приведены в таблице 1).

Следующим этапом стало построение непосредственно модели для дифференциации больных по характеру течения заболевания методом пошагового регрессионного анализа. Коэффициенты модели (В) для факторов, включенных в модель, и их значимость даны в таблице 3.

В таблице 2 также приводятся оценки качества модели:

- коэффициент детерминации (R2=0,4180), определяющий ее информационную значимость;

- значение F-критерия (F(3,48) = 11,490) и уровень значимости модели (p<0,000009), определяющие статистическую значимость модели.

Таблица 3 - Результаты регрессионного анализа

Итоги Гребневой регрессии для зависимой переменной: Исход
l=0,10000 R= 0,64650583 R2= 0,4180 Скоррект. R2 0,38159290 F(3,48)=11,490 p<0,00001
БЕТА Стандартная ошибка - БЕТА B Стандартная ошибка - B t(48) p-значение Св.член 0,1741 0,22 0,78 0,44 РБТЛ % -0,47 0,13 -0,0096 0,00 -3,58 0,00 CD16 0,28 0,13 0,0128 0,01 2,11 0,04 ЛФ(%) 0,14 0,12 0,0047 0,00 1,17 0,25

Степень влияния независимых факторов на исход заболевания (таблица 4) рассчитывался, исходя из величины стандартизированных коэффициентов регрессии ВЕТА (по результатам регрессионного анализа) с помощью формулы:

(1)

Таблица 4 - Степень влияния факторов на критерий риска

Фактор BETA Степень влияния , % РБТЛ % -0,4694 21,89 CD16 0,2844 13,26 ЛФ(%) 0,1427 6,65

Таким образом, наибольшее влияние на прогноз исхода заболевания оказывает фактор РБТЛ (21,89%), меньше - CD16 (13,26%) и лф(%), 6,65%).

Модель для диагностики характера течения заболевания имеет вид:

(2)

где у - параметр исхода COVID-19, х1 - РБТЛ, х2 - CD16, х3 - лф (%).

В таблице 5 приведены данные дисперсионного анализа полученной регрессионной модели и оценки ее информативности. Вклад факторов, включенных в модель (Регресс. = 4,28), составляет 41,80 % от общей суммы квадратичных отклонений параметра у, а часть вклада (58,20%) вносят неучтенные (случайные) факторы (Остатки = 5,95), что свидетельствует о степени информационной способности модели. По величине F-критерия, F = 11,49 с уровнем значимости p=0,000009 модель можно считать значимой с высокой степенью достоверности.

Таблица 5 - Результаты дисперсионного анализа

Сумма квадратов Степень свободы Среднее квадратичное F p-уровень Регресс. 4,28 3 1,43 11,49 0,000009 Остатки 5,95 48 0,12 Итого 10,23

Модель дифференциации пациентов по характеру течения заболевания имеет информационную значимость (коэффициент детерминации R2=0,4180) и статистическую ценность (F(3,48) = 11,49 p=0,000009).

В данной модели p-значение равно 0,000009, что существенно меньше обычного уровня значимости 0,05. Это указывает на то, что регрессионная модель в целом статистически значима. Полученная модель дифференциации пациентов по прогнозируемому исходу позволяет путем подстановки в указанную формулу значений показателей факторов получить критерий принадлежности к группе вероятного исхода.

При значении у, равном 0-0,5, прогнозируют выздоровление, при значении y выше 0,5 прогнозируют летальный исход.

Для подтверждения этой гипотезы мы провели обследование 70 пациентов с различными исходами COVID-19 в ГБУЗ «Пензенский областной клинический центр специализированных видов медицинской помощи» (Россия). Правильный диагноз был установлен в 95 % случаев.

Лечение COVID-19 было проведено в соответствии с Временными методическими рекомендациями «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19), Version 17 от 14.12.22.

Реализация предложенного способа доказывается следующими примерами.

Пример 1 (летальный исход)

Пациентка Н., 54 года. Поступила в боксированное отделение ГБУЗ «Пензенский областной клинический центр специализированных видов медицинской помощи» с жалобами на одышку, слабость, сухой кашель, спутанность сознания. Болеет около 10 дней, за медицинской помощью не обращалась, занималась самолечением. Состояние средней тяжести. Обследование показало: Рост 158 см, вес 65 кг, ИМТ 26,04 кг/м 2; кожные покровы бледные, чистые. Аускультация легких: дыхание ослабленное, проводится во все отделы, единичные сухие хрипы в нижних отделах легких, ЧДД 28 в минуту, сатурация 85% на атмосферном воздухе, на инсуффляции увлажненного кислорода на скорости 20% - сатурация 97%. Тоны сердца: приглушенные, ритм ослаблен, слышен шум, АД 100/70 мм рт. ст., ЧСС 99 уд/мин. Живот при пальпации мягкий, безболезненный во всех отделах, печень выступает за края реберной дуги на 1 см. Мочеиспускание затруднено, имеется дизурия. Очаговой неврологической симптоматики нет, органы чувств без особенностей. Сопутствующий диагноз: ИБС, гипертоническая болезнь 3 ст, риск 3 (Невиболол-Тева, 5 мг), бронхиальная астма (беродуал).

Компьютерная томография органов грудной клетки (КТ) - двусторонние интерстициальные изменения, объем поражения КТ-3 (75%). Общий анализ крови - лейкопения 2,1*109 л (норма 4-9*109 л), тромбоцитопения 82*109 л (норма 180-320*109 л), сдвиг лейкоцитарной формулы вправо. Мазок из зева и носа методом ПЦР на SARS-CoV-2 - положительный. Продленная ИВЛ. Терапия: Режим ОРИТ. Продленная ИВЛ. Противовирусная терапия (ремдесивир 200 мг в/в капельно в первые сутки, по 100 мг в/в капельно в последующие дни лечения); патогенетическая терапия (тоцилизумаб 400 мг в/в капельно); антибактериальная терапия (цефтриаксон по 1 г в/м 2 раза в сутки, моксифлоксацин по 400 мг в/в капельно 1 раз в сутки); антикоагулянтная терапия (гепарин по 5000 ЕД п/к 4 раза в сутки); посиндромная терапия. Через 7 дней интенсивной терапии наступило ухудшение состояния с дыхательной недостаточностью, пациентка скончалась.

Патолого-анатомический диагноз. Основной диагноз: Коронавирусная инфекция, лабораторно подтвержденная методом ПЦР, крайне тяжелое течение. Осложнение: Двусторонняя полисегментарная интерстициальная пневмония (КТ-4), ОРДС. ДН 3 степени. Отек головного мозга. Полиорганная недостаточность. ТЭЛА (тромбоэмболия легочной артерии).

Проведено обследование пациентки Н. по предложенному способу, в результате которого были получены следующие показатели: РБТЛ- 12%; CD16+ составил 38%, лф - 23%.

=0,6528

Так как полученное значение больше значения 0,5, то прогнозируется летальный исход, что в итоге и произошло.

Пример 2 (выздоровление).

Пациент А., 59 лет. Жалобы при поступлении: одышка, выраженная слабость, сухой кашель. Болеет около 2-х недель, принимал препараты при повышении температуры выше 38°С. Состояние тяжелое. Рост 178 см, вес 85 кг, ИМТ 26,89 кг/м 2. Кожные покровы бледные. Аускультация легких: дыхание ослабленное, проводится не во все отделы, единичные сухие хрипы в нижних отделах легких, ЧДД 29 в мин., сатурация 85% на атмосферном воздухе, на инсуффляции увлажненного кислорода на скорости 20% - сатурация 87%. Тоны сердца: приглушенные, перебои в ритме, шумов нет, АД 140/90 мм рт. ст., ЧСС 102 уд/мин. Живот при пальпации мягкий, безболезненный во всех отделах, печень не увеличена. Мочеиспускание затруднено, безболезненное, имеется дизурия. Очаговой неврологической симптоматики нет. Сопутствующий диагноз: гипертоническая болезнь 2 степени, риск 2 (Невиболол-Тева, 5 мг).

Компьютерная томография органов грудной клетки (КТ) - двусторонние интерстициальные изменения, объем поражения КТ-3 (60%). Общий анализ крови - незначительная лейкопения 3,9*109 л (норма 4-9*109 л), сдвиг лейкоцитарной формулы вправо. Мазок из зева и носа методом ПЦР на SARS-CoV-2 - положительный.

Лечение. Режим ОРИТ. Продленная ИВЛ. Противовирусная терапия (ремдесивир 200 мг в/в капельно в первые сутки, по 100 мг в/в капельно в последующие дни лечения). Патогенетическая терапия (тоцилизумаб 400 мг в/в капельно). Антибактериальная терапия(цефепим по 1 г в/м 2 раза в сутки, ванкомицин по 1 г 2 раза в сутки в/в капельно 1 раз в сутки). Антикоагулянтная терапия (гепарин по 5000 ЕД п/к 4 раза в сутки).

Основной диагноз: Коронавирусная инфекция, лабораторно подтвержденная методом ПЦР, тяжелое течение. Осложнение: Двусторонняя полисегментарная интерстициальная пневмония (КТ-3), ДН 2 степени. Сопутствующий диагноз: гипертоническая болезнь 2 степени (Невиболол-Тева 5 мг).

Проведено обследование пациента А. по предложенному способу, в результате которого были получены следующие показатели: РБТЛ- 42%; CD16+ составил 17%, лф - 54%.

=0,2397

Так как полученное значение меньше 0,5, то прогнозируется выздоровление, что в итоге и произошло.

Пациент №3 (летальный исход)

Пациент Р., 64 года. Поступил в боксированное отделение ГБУЗ «Пензенский областной клинический центр специализированных видов медицинской помощи» с жалобами на повышение температуры тела, выраженную одышку, слабость, сухой кашель. Болеет около 1 недели, за медицинской помощью не обращался. Состояние средней тяжести. Обследование показало: Рост 174 см, вес 85 кг, ИМТ 28,1 кг/м 2; кожные покровы бледно-серые, чистые. Аускультация легких: дыхание ослабленное, проводится не во все отделы, множественные сухие хрипы в нижних отделах легких, ЧДД 29 в минуту, сатурация 81% на атмосферном воздухе, на инсуффляции увлажненного кислорода на скорости 20% - сатурация 85%. Тоны сердца: приглушенные, аритмия, шумов нет, АД 110/75 мм рт. ст., ЧСС 89 уд/мин. Живот при пальпации мягкий, безболезненный во всех отделах, печень увеличена на 1,5 см. Мочеиспускание не затруднено, безболезненное, дизурии нет. Слабая неврологическая симптоматика в виде беспокойства, нарушении сна, органы чувств без особенностей. Сопутствующий диагноз: ИБС.

Компьютерная томография органов грудной клетки (КТ) - двусторонние интерстициальные изменения, объем поражения КТ-3 (62%). Общий анализ крови - лейкопения 3,1*109 л (норма 4-9*109 л), тромбоцитопения 110*109 л (норма 180-320*109 л), сдвиг лейкоцитарной формулы вправо. Мазок из зева и носа методом ПЦР на SARS-CoV-2 - положительный. Терапия: Режим ОРИТ. Продленная ИВЛ. Противовирусная терапия (ремдесивир 200 мг в/в капельно в первые сутки, по 100 мг в/в капельно в последующие дни лечения); патогенетическая терапия (тоцилизумаб 400 мг в/в капельно); антибактериальная терапия (цефтриаксон по 1 г в/м 2 раза в сутки, моксифлоксацин по 400 мг в/в капельно 1 раз в сутки); антикоагулянтная терапия (гепарин по 5000 ЕД п/к 4 раза в сутки); посиндромная терапия.

Патолого-анатомический диагноз. Основной диагноз: Коронавирусная инфекция, лабораторно подтвержденная методом ПЦР, крайне тяжелое течение. Осложнение: Двусторонняя полисегментарная интерстициальная пневмония (КТ-4), ОРДС. ДН 3 степени. Отек головного мозга. Полиорганная недостаточность.

Проведено обследование пациента Р. по предложенному способу, в результате которого были получены следующие показатели: РБТЛ- 4%; CD16+ составил 32%, лф - 21%.

=0,6429

Так как полученное значение оказалось больше значения 0,5, то прогнозируется летальный исход, что в итоге и произошло.

Таким образом, предложенный способ объективен, достоверен и может быть использован для прогноза риска развития летального исхода COVID-19.

Похожие патенты RU2830374C1

название год авторы номер документа
Способ прогнозирования возникновения острого повреждения почек при пневмониях, ассоциированных с COVID-19, по уровню s-CysC 2022
  • Корабельников Даниил Иванович
  • Магомедалиев Магомедали Омарасхабович
  • Хорошилов Сергей Евгеньевич
RU2788298C2
Способ прогнозирования летального исхода у пациентов с цитокиновым штормом, ассоциированным с COVID-19 2022
  • Щербак Сергей Григорьевич
  • Анисенкова Анна Юрьевна
  • Мосенко Сергей Викторович
RU2825710C2
Способ оценки неблагоприятного исхода пневмонии тяжелого течения, ассоциированной с COVID-19, по уровню u-CysC 2022
  • Магомедалиев Магомедали Омарасхабович
  • Корабельников Даниил Иванович
  • Хорошилов Сергей Евгеньевич
RU2779579C2
Способ оценки неблагоприятного исхода пневмонии тяжелого течения, ассоциированной с COVID-19, по уровню s-CysC 2022
  • Магомедалиев Магомедали Омарасхабович
  • Корабельников Даниил Иванович
  • Хорошилов Сергей Евгеньевич
RU2779581C2
Способ прогноза риска летального исхода COVID-19 у пациентов молодого возраста 2023
  • Понежева Жанна Бетовна
  • Гришаева Антонина Алексеевна
  • Алимова Лилия Камильевна
  • Чанышев Михаил Дамирович
  • Бурдакова Елизавета Александровна
  • Маржохова Асият Руслановна
  • Усенко Денис Валериевич
  • Акимкин Василий Геннадьевич
RU2803002C1
Способ прогнозирования летального исхода при SARS-CoV-2-ассоциированной пневмонии 2023
  • Савилов Павел Николаевич
  • Шутова Светлана Владимировна
  • Курдюмова Софья Сергеевна
RU2825705C1
Способ прогнозирования риска летального исхода у госпитализированных пациентов с COVID-19, получающих заместительную почечную терапию программным гемодиализом по поводу хронической болезни почек 5 стадии 2024
  • Сучков Виктор Николаевич
  • Гусев Денис Александрович
  • Бакулина Наталья Валерьевна
  • Дунаева Наталья Викторовна
  • Медведев Константин Валерьевич
RU2829424C1
Способ прогнозирования преждевременных родов у женщин с пневмонией в третьем триместре, вызванной SARS-CoV-2 2023
  • Андриевская Ирина Анатольевна
  • Ишутина Наталия Александровна
  • Жуковец Ирина Валентиновна
  • Лязгиян Карен Саргисович
  • Жуковская Ольга Валерьевна
RU2801031C1
Способ прогнозирования риска летального исхода на госпитальном этапе у пациентов с инфарктом миокарда без подъема сегмента ST, перенесших новую коронавирусную инфекцию COVID-19, с учетом их иммунологического статуса 2022
  • Чащин Михаил Георгиевич
  • Горшков Александр Юрьевич
  • Драпкина Оксана Михайловна
RU2781565C1
СПОСОБ ПРОГНОЗИРОВАНИЯ ОСЛОЖНЕНИЯ ПОСЛЕ COVID-19 У ЛИЦ С КОМОРБИДНЫМ ФОНОМ В АРКТИЧЕСКОМ РЕГИОНЕ 2023
  • Щёголева Любовь Станиславовна
  • Шашкова Елизавета Юрьевна
  • Поповская Екатерина Васильевна
  • Филиппова Оксана Евгеньевна
RU2812780C1

Реферат патента 2024 года Способ прогнозирования исходов COVID-19

Изобретение относится к медицине и касается способа прогнозирования исходов COVID-19. Забирают кровь и определяют методом проточной цитофлюориметрии уровни: реакции бластной трансформации лимфоцитов (РБТЛ), маркера натуральных киллеров (CD16+) и процентного содержания лимфоцитов (лф), %. После этого осуществляют оценку исходов COVID-19 по формуле для расчета y: при значении у, равном 0-0,5, прогнозируют выздоровление, при значении y выше 0,5 прогнозируют летальный исход. Изобретение обеспечивает возможность расширения инструментов для прогноза исхода COVID-19, которое позволяет разделить пациентов на две группы: с выздоровлением и летальным исходом за счет определения до начала терапии трех показателей иммунитета: РБТЛ, CD16+, лф, %. 5 табл., 3 пр.

Формула изобретения RU 2 830 374 C1

Способ прогнозирования исхода COVID-19, включающий забор крови и определение методом проточной цитофлюориметрии уровней: реакции бластной трансформации лимфоцитов (РБТЛ), маркера натуральных киллеров (CD16+) и процентного содержания лимфоцитов (лф), %, после чего осуществляют оценку исходов COVID-19 по формуле

,

где у – параметр исхода COVID-19, х1 – РБТЛ, %, х2 – CD16, %, х3 – лф, %, при значении у, равном 0-0,5, прогнозируют выздоровление, при значении y выше 0,5 прогнозируют летальный исход.

Документы, цитированные в отчете о поиске Патент 2024 года RU2830374C1

Способ прогнозирования исхода острого заболевания, вызванного новой коронавирусной инфекцией COVID-19 2021
  • Арсентьева Наталья Александровна
  • Любимова Наталья Евгеньевна
  • Бацунов Олег Константинович
  • Коробова Зоя Романовна
  • Кузнецова Раиса Николаевна
  • Рубинштейн Артем Аркадьевич
  • Станевич Оксана Владимировна
  • Лебедева Александра Александровна
  • Воробьев Евгений Александрович
  • Воробьева Снежана Викторовна
  • Куликов Александр Николаевич
  • Гаврилова Елена Геннадьевна
  • Полушин Юрий Сергеевич
  • Шлык Ирина Владимировна
  • Тотолян Арег Артемович
RU2766347C1
СПОСОБ ПРОГНОЗИРОВАНИЯ ТЕЧЕНИЯ ПНЕВМОНИИ У ПАЦИЕНТОВ С ПОДТВЕРЖДЕННЫМ COVID-19 2021
  • Морозова Татьяна Геннадьевна
  • Завалюк Каринэ Аркадьевна
  • Ковалёв Алексей Викторович
RU2757843C1
Способ прогнозирования тяжести течения пневмонии при COVID-19 2022
  • Гасанов Казим Гусейнович
  • Кчибеков Элдар Абдурагимович
  • Антонян Виталина Викторовна
  • Кчибеков Алик Абдурагимович
  • Тхохова Елена Николаевна
RU2795093C1
Способ прогнозирования исходов пневмонии при COVID-19 2022
  • Гасанов Казим Гусейнович
  • Кчибеков Элдар Абдурагимович
  • Гасанова Рейна Камиловна
  • Сеферов Самур Эюбович
  • Алиев Аликади Алиевич
RU2795095C1
Способ прогнозирования исходов инфекционного процесса после перенесенной новой коронавирусной инфекции в течение 12 месяцев 2023
  • Дьяков Денис Александрович
  • Акбашева Ольга Евгеньевна
  • Спирина Людмила Викторовна
  • Меркулов Евгений Дмитриевич
  • Новожилова Полина Олеговна
  • Узянбаев Ильдар Ахметович
  • Сваровский Дмитрий Андреевич
  • Куанышева Кристина Алексеевна
RU2807384C1
JP 2022172923 A, 17.11.2022
WO 2022180415 A1, 01.09.2022
АРСЕНТЬЕВА Н.А
и др
Способ изготовления электрических сопротивлений посредством осаждения слоя проводника на поверхности изолятора 1921
  • Андреев Н.Н.
  • Ландсберг Г.С.
SU19A1
Медицинская иммунология
Способ регенерирования сульфо-кислот, употребленных при гидролизе жиров 1924
  • Петров Г.С.
SU2021A1

RU 2 830 374 C1

Авторы

Баранова Надежда Ивановна

Ащина Людмила Андреевна

Болгова Александра Игоревна

Кулиева Оксана Александровна

Даты

2024-11-18Публикация

2023-12-19Подача