ПЛАВЛЕНОЛИТОЙ ВЫСОКОЦИРКОНИЕВЫЙ ОГНЕУПОРНЫЙ МАТЕРИАЛ Российский патент 1995 года по МПК C04B35/657 C04B35/48 

Описание патента на изобретение RU2039026C1

Изобретение относится к огнеупорной промышленности и может быть использовано для изготовления плавленолитых высокоциркониевых огнеупорных материалов для футеровки стекловаренных печей.

Известен плавленолитой высокоциркониевый огнеупорный материал [1] содержащий, мас. ZrO2 89,0-97,5; SiO ≅1,0; Аl2O3 ≅1,0; СаО или другой стабилизирующий агент 2,5-8,0.

Известен также плавленолитой высокоциркониевый огнеупорный материал [2] содержащий, мас. ZrO2 85,0-97,0; Р2О5 0,05-3,0; SiO2 2,0-10,0; В2О3 0,05-5,0; R2О ≅ 1,0; Al2O3 ≅ 1,0.

Недостатком указанных материалов является их низкая технологичность (низкая степень проплавляемости материала, трещиноватость изделий), связанная с высоким содержанием диоксида циркония и нерациональным составом стекловидной фазы.

Наиболее близким техническим решением к предлагаемому является плавленолитой огнеупорный материал [3] содержащий, мас. SiO2 1,2-8,0; Al2O3 0,3-2,0; Р2О5 0,2-2,0; Na2O 0,2-0,8; SnO2 0,2-1,0; ZnO 0,2-0,6; ZrO2 остальное.

Указанный огнеупор характеризуется низкой технологичностью (низкая степень проплавляемости материала в печи) и низкой тугоплавкостью стекловидной фазы (низкая температура выделения стеклофазы из огнеупора), снижающей качество изготавливаемых оптических стекол.

Целью изобретения является улучшение технологичности изготовления огнеупорного материала, повышение тугоплавкости его стекловидной фазы, обеспечивающей высокую коррозионную стойкость огнеупорного материала и заданные свойства выплавляемых оптических стекол.

Поставленная цель достигается тем, что плавленолитой высокоциркониевый огнеупорный материал, включающий ZrO2, SiO2, Al2O3, SnO2, ZnO, P2O5 и R2O в качестве R2О cодержит по меньшей мере один оксид из группы К2О, Na2O, Li2O и дополнительно по меньшей мере один оксид из группы MgO, CaO и по меньшей мере один галоген из группы F, Cl при следующем соотношении компонентов, мас. SiO2 1,0-5,5 Al2O3 0,3-1,2 SnO2 0,1-0,5 ZnO 0,1-0,4 P2O5 0,1-0,3
По меньшей мере один
оксид из группы Na2O, K2O, Li2O 0,1-0,3
По меньшей мере один
оксид из группы MgO, CaO 0,4-7,0
По меньшей мере один
галоген из группы F, Cl 0,1-0,3 ZrO2 Остальное
По экспериментальным данным высокая коррозионная стойкость данного огнеупорного материала достигается высокой степенью его кристалличности (92-94% объемн. ) и содержанием в кристаллической фазе в количестве 98-99 мас. диоксида циркония различной модификации. Соотношение модификаций диоксида циркония (ZrO2 моноклинная и ZrO2 кубическая) при данном содержании SiO2 (1,0-5,5 мас. ) определяется количеством в материале компонента RO (MgO, CaO).

Содержание компонента MgO, CaO в количестве 0,4-7,0% определяется необходимостью образования в огнеупоре фазы ZrO2 куб. которая не имеет объемных полиморфных превращений, свойственных фазе ZrO2 моноклин. Содержание оксида MgO, СаО в количестве 7% является достаточным для полной стабилизации диоксида циркония и наличии в составе огнеупора фазы диоксида циркония преимущественно в форме ZrO2 куб. При этом содержание кремнезема находится в пределах 1,0-4,0% Содержание компонента СаО, MgO менее 0,4% стабилизирующего действия на диоксид циркония не оказывает, и диоксид циркония присутствует в огнеупоре в виде фазы ZrO2-моноклин. что требует для достижения технологичности изготовления огнеупорных изделий наличия в составе огнеупора кремнезема в пределах 4,0-5,5% Улучшение технологичности изготовления изделий (высокая степень проплавляемости материала в печи, низкая трещиноватость изделий) достигается повышением содержания оксида СаО, MgO при снижении содержания кремнезема в предусмотренных формулой изобретения пределах, а также наоборот.

Содержание SiO2 в пределах 1,0-5,5% в совокупности с щелочным оксидом Na2O, K2O, Li2O (0,1-0,3%), оксидом алюминия (0,3-1,2%), фосфорным ангидридом (0,1-0,3%), а также галогеном F, Cl (0,1-0,3%), позволяет сформировать в огнеупоре тугоплавкую стекловидную фазу (с высокой температурой начала выделения стеклофазы из огнеупора), которая характеризуется достаточной жидкотекучестью, позволяющей повысить степень проплавляемости огнеупора, а также снизить трещиноватость получаемых огнеупорных отливок.

Повышение содержания указанных компонентов стеклофазы, особенно щелочного оксида Na2O, K2O, Li2O и фосфорного ангидрида Р2О5, ведет к снижению ее тугоплавкости.

Компонентом, повышающим тугоплавкость стеклофазы, является SnО2, содержание которого по отношению к SiO2 должно соответствовать SiO2:SnO2 ≥ 10 (массовое отношение). Однако, увеличение содержания SnO2 свыше 0,5% может явиться причиной выделения пороков (камень, шлир) в оптическое стекло и изменения его свойств.

Оксид цинка является компонентом стеклофазы, повышающим ее степень окисления (минимальное науглероживание при плавлении). При содержании оксида цинка в количестве 0,4% содержание углерода в стеклофазе огнеупора не превышает 0,005% что является достаточным для использования его при плавке электровакуумных и оптических стекол. Этот уровень содержания оксида цинка также обеспечивает высокую температуру (>1450оС) выделения стеклофазы из огнеупора.

Наличие в огнеупоре галогена F, Cl в количестве 0,1-0,3% в совокупности с щелочным оксидом обеспечивает высокую подвижность ионов расплава, что определяет его жидкотекучесть и высокую степень проплавляемости материала. Увеличение содержания галогена сверх 0,3% хотя и повышает жидкотекучесть расплава, но и ведет к снижению его эксплуатационных характеристик.

Для получения огнеупорного материала подготавливали шихты, состоящие из двуокиси циркония, кварцевого песка, глинозема, окиси цинка, окиси олова, фосфата натрия, карбонатов лития и калия, криолита, плавикового шпата, карналлита, известняка. Шихты плавили в электродуговой печи с диаметром корпуса печи 1200 мм при напряжении 110-160 В и токе 1-1,5 кА. Расплав заливали в графитовые литейные формы, после чего отливки размером 155х155х240 мм отжигали в естественных условиях в термоящиках с теплоизолирующей засыпкой в течение 3-4 сут.

Конкретные составы предлагаемого огнеупорного материала представлены в табл.1.

Степень проплавляемости (Кпр.%) материала определяли по формуле:
Kпр100 где Sn площадь внутреннего сечения корпуса печи (Sn π R2, R 600 мм);
Sр площадь поверхности расплава огнеупорного материала внутри печи после плавления материала (шихты) в течение 60 мин.

Определение температуры начала выделения стекловидной фазы из огнеупора проводили на высокотемпературном микроскопе МНО-2 (Карл Цейсс) по методике СТП 38-14-79, ГИС.

Определение коррозионной стойкости огнеупорных материалов проводили в расплаве боросиликатного оптического стекла состава, мас. SiO2 68,8; В2О3 11,2; As2O3 0,36; ВаО 2,7; К2O 6,7; Nа2О 10,4; в статических условиях при температуре 1450оС в течение 24 ч.

Коррозионную стойкость (скорость коррозии) образцов огнеупора определяли по изменению линейных размеров (сечение образцов 10х10 мм) на уровне стекла после коррозионных испытаний.

Технологические показатели и результаты эксплуатационных испытаний огнеупоров приведены в табл.2.

Из табл. 2 следует, что огнеупорный материал предлагаемого состава (составы 1-4) характеризуется более высокой (на 65-80оС) температурой начала выделения стекловидной фазы огнеупора, а также характеризуется более высокой степенью проплавляемости материала и более высокой коррозионной стойкостью по сравнению с известным огнеупором (составы 5-6).

Использование предлагаемого изобретения позволяет реализовать его в организации производства плавленолитого высокоциркониевого огнеупора, характеризующегося высокой технологичностью изготовления изделий и высокими эксплуатационными характеристиками к действию расплава оптического стекла.

Похожие патенты RU2039026C1

название год авторы номер документа
ПЛАВЛЕНОЛИТОЙ ХРОМСОДЕРЖАЩИЙ ОГНЕУПОРНЫЙ МАТЕРИАЛ 1992
  • Соколов Владимир Алексеевич
RU2041181C1
ПЛАВЛЕНОЛИТОЙ ГЛИНОЗЕМИСТЫЙ ОГНЕУПОРНЫЙ МАТЕРИАЛ 1992
  • Соколов Владимир Алексеевич
RU2039025C1
ПЛАВЛЕНОЛИТОЙ ХРОМСОДЕРЖАЩИЙ ОГНЕУПОРНЫЙ МАТЕРИАЛ 2012
  • Соколов Владимир Алексеевич
  • Гаспарян Микаэл Давидович
  • Савкин Александр Евгеньевич
  • Глаговский Эдуард Михайлович
RU2495000C2
ПЛАВЛЕНОЛИТОЙ ВЫСОКОХРОМИСТЫЙ ОГНЕУПОРНЫЙ МАТЕРИАЛ 2015
  • Соколов Владимир Алексеевич
  • Гаспарян Микаэл Давидович
  • Ремезов Михаил Борисович
  • Ивлев Сергей Алексеевич
RU2581182C1
СПОСОБ ПЕРЕРАБОТКИ ЛОМА ОТРАБОТАННЫХ ПЛАВЛЕНОЛИТЫХ БАДДЕЛЕИТОКОРУНДОВЫХ МАТЕРИАЛОВ 2018
  • Мерзляков Виталий Николаевич
  • Кочетков Виктор Викторович
  • Сычёв Вадим Валерьевич
  • Перепелицын Владимир Алексеевич
RU2717593C2
СТЕКЛО ДЛЯ ПРОЗРАЧНОГО В ИК-ОБЛАСТИ ТЕМНО-КРАСНОГО СТЕКЛОКРИСТАЛЛИЧЕСКОГО МАТЕРИАЛА 1990
  • Семина Л.С.
  • Журавлева В.А.
RU2032633C1
ФРИТТА БЕЗГРУНТОВОЙ ЭМАЛИ 1992
  • Азовкина Маргарита Георгиевна
  • Жуковский Николай Константинович
  • Литвинов Владимир Павлович
  • Семибратов Юрий Валентинович
  • Сиротинский Александр Александрович
  • Ковалевский Валерий Борисович
RU2036174C1
БОРОСИЛИКАТНОЕ СТЕКЛО С ВЫСОКОЙ ХИМИЧЕСКОЙ СТОЙКОСТЬЮ И НИЗКОЙ ВЯЗКОСТЬЮ, КОТОРОЕ СОДЕРЖИТ ОКСИД ЦИРКОНИЯ И ОКСИД ЛИТИЯ 1996
  • Экхарт Ватцке
  • Андреа Кэмпфер
  • Петер Брикс
  • Франц Отт
RU2127709C1
АЦК ПРОДУКТ С УМЕНЬШЕННЫМ ВЫПОТЕВАНИЕМ 2005
  • Буссан-Ру Ив
  • Кабоди Изабелла
  • Гобиль Мишель
RU2386602C2
Стекло для спаивания со сплавами алюминия 2020
  • Малюков Сергей Павлович
  • Ковалев Андрей Владимирович
  • Саенко Александр Викторович
  • Тимощенко Дмитрий Викторович
RU2771549C2

Иллюстрации к изобретению RU 2 039 026 C1

Реферат патента 1995 года ПЛАВЛЕНОЛИТОЙ ВЫСОКОЦИРКОНИЕВЫЙ ОГНЕУПОРНЫЙ МАТЕРИАЛ

Изобретение относится к огнеупорной промышленности, в частности к огнеупорным материалам для футеровки стекловаренных печей. Сущность изобретения: плавленолитой высокоциркониевый огнеупорный материал содержит, мас. SiO2 1,0 5,5; Al2O3 0,3 1,2; SnO2 0,1 0,5; ZnO 0,1 0,4; P2O5 0,1 - 0,3; по меньшей мере один щелочной оксид из группы Na2O K2O Zi2O 0,1 - 0,3; по меньшей мере один оксид из группы MgO, CaO 0,4 7,0; по меньшей мере один галоген из группы F, Cl 0,1 0,3; Z2O2 остальное. Указанное соотношение компонентов обеспечивает высокую тугоплавкость стекловидной фазы огнеупора, повышает степень проплавляемости материала при высокой коррозионной стойкости огнеупора к расплавам оптических стекол. 2 табл.

Формула изобретения RU 2 039 026 C1

ПЛАВЛЕНОЛИТОЙ ВЫСОКОЦИРКОНИЕВЫЙ ОГНЕУПОРНЫЙ МАТЕРИАЛ, включающий ZrO2, SiO2, Al2O3, SnO2, ZnO, P2O5 и R2O, отличающийся тем, что в качестве R2O он содержит по меньшей мере один оксид из группы: Na2O, K2O, Li2O и дополнительно по меньшей мере один оксид из группы: MgO, CaO и по меньшей мере один галоген из группы: F, Cl при следующем соотношении компонентов, мас.

SiO2 1,0 5,5
Al2O3 0,3 1,2
SnO2 0,1 0,5
ZnO 0,1 0,4
P2O5 0,1 0,3
По меньшей мере один оксид из группы: Na2O, K2O, Li2O 0,1 0,3
По меньшей мере один оксид из группы MgO, CaO 0,4 7,0
По меньшей мере один галоген из группы F, Cl 0,1 0,3
ZrO2 Остальное

Документы, цитированные в отчете о поиске Патент 1995 года RU2039026C1

Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Электроплавленный огнеупор 1984
  • Рублевский Иван Петрович
  • Верлоцкий Александр Абрамович
SU1178738A1
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1

RU 2 039 026 C1

Авторы

Соколов В.А.

Даты

1995-07-09Публикация

1993-01-18Подача