СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ЦЕЛЬНОКАТАНЫХ ЖЕЛЕЗНОДОРОЖНЫХ КОЛЕС Российский патент 1995 года по МПК C21D9/34 

Описание патента на изобретение RU2044072C1

Изобретение относится к области черной металлургии, в частности к производству железнодорожных колес, и может быть использовано при производстве крупных заготовок деталей машин.

Ужесточенные условия эксплуатации, в том числе при отрицательных температурах, возросшие динамические нагрузки предъявляют повышенные требования к надежности и долговечности цельнокатаных железнодорожных колес.

Известны способы термической обработки железнодорожных колес, предусматривающие изотермическую выдержку заготовок колес после их прокатки на стане с целью предупреждения образования флокенов при температуре 600-670оС в течение не менее 3 ч [1, 2]
Недостатком известных способов является то, что они направлены лишь на предупреждение образования флокенов.

В качестве прототипа взят известный способ термической обработки железнодорожных колес, включающий их противофлокенную обработку при 600-650оС с выдержкой в течение 3-6 ч и охлаждение [3]
Недостатки известного способа высокая энергоемкость процесса, отсутствие возможности повышения пластических свойств готовых изделий.

Установлено, что углеродистая феррито-перлитная сталь может в таких изделиях, как колеса и бандажи, обладать значительной флокеночувствительностью. Основной причиной образования флокенов в стали является водород. Разработанные технологические процессы, противофлокенной обработки направлены на предотвращение образования флокенов в изделиях. Главным критерием оценки эффективности проведения термической обработки является отсутствие в заготовках-колесах флокенов. Вместе с тем наличие водорода в металле оказывает влияние и на пластические характеристики материала изделия. Процесс противофлокенной обработки длительный (3-6 ч) и требует значительных затрат энергоносителей.

Цель изобретения повышение пластических свойств готовых изделий при сокращении энергоемкости процесса.

Поставленная цель достигается тем, что в период выдержки при противофлокенной обработке осуществляют одноразовое охлаждение колес до 500-540оС со скоростью 2,0-2,5оС/мин и их нагрев до исходной температуры со скоростью 3,5-4,0оС/мин.

Предлагаемый способ включает противофлокенную обработку железнодорожных колес при 600-650оС с выдержкой в течение 3-6 ч и охлаждение.

Отличается предлагаемый способ от прототипа тем, что в период выдержки при противофлокенной обработке осуществляют одноразовое охлаждение колес до 500-540оС со скоростью 2,0-2,5оС/мин и их нагрев до исходной температуры со скоростью 3,5.4,0оС/мин.

Сравнительный анализ известных технических решений и заявляемого не обнаружил у них сходных признаков. Следовательно, заявляемый способ обладает существенными отличиями.

Способ осуществляют так. В период выдержки при противофлокенной обработке осуществляют одноразовое охлаждение колес до 500-540оС. Его необходимость связана с гарантированным проведением превращения γ->>α, так как сохранение отдельных участков аустенита не дает возможности в процессе противофлокенной обработки удалить водород из металла и равномерно рассредоточить его остаточное содержание в объеме всего изделия. Вследствие ликвации отдельных элементов, в том числе и самого водорода, повышающих устойчивость аустенита, переохлаждение изделия является весьма благоприятным. Процесс удаления водорода из прокатанного металла состоит из двух стадий: выделения его из раствора, которое происходит тем интенсивнее, чем ниже температура металла, и диффузии, которая протекает тем быстрее, чем выше его температура. Установлено, что переохлаждение колеса обеспечивает тем самым ускоренное выделение водорода из раствора его в α -железе, а следующий (повторный) нагрев (подогрев) до температур противофлокенной обработки увеличивает скорость диффузии водорода из металла, что способствует повышению пластических свойств колес.

Одноразовое охлаждение до температур ниже 500оС нецелесообразно в целях экономии тепла (сокращения расхода энергоносителей на последующий подогрев заготовок колес в область температур изотермической выдержки). Охлаждение до температур выше 540оС не гарантирует полного γ->>α превращения во всем объеме металла из-за ликвации. Одноразовое охлаждение осуществляют со скоростью 2,0-2,5оС/мин, которая является наиболее технологичной. Охлаждение со скоростью менее 2,0оС/мин приведет к увеличению длительности процесса, что скажется на производительности участка. Охлаждение заготовок-колес со скоростью выше 2,5оС/мин неэффективно, т.к. повлечет при внедрении дополнительные капвложения для монтажа охлаждающих устройств.

Последующий нагрев до исходной температуры 600-650оС осуществляют со скоростью 3,5-4,0оС/мин, является наиболее экономичным. Нагрев со скоростью ниже 3,5оС/мин приведет к увеличению длительности противофлокенной обработки, а со скоростью выше 4,0оС/мин приведет к увеличению расхода энергоносителей.

Предлагаемый способ термической обработки позволяет значительно (на треть) сократить расход энергоносителей при противофлокенной обработке заготовок-колес на существующем технологическом оборудовании, при прежней длительности процесса, так как одноразовое охлаждение ведут в проходной печи без подачи энергоносителей.

П р и м е р. Опробование заявляемого способа осуществлено в колесопрокатном цехе Выксунского металлургического завода. При опробовании способа партию колес после прокатки подвергали противофлокенной обработке в многосекционной проходной печи при температуре 630оС в течение 3,5 ч. В процессе противофлокенной обработки осуществляли различные варианты одноразового охлаждения в интервале 490-550оС и до исходной температуры 630оС. Скорость охлаждения регулировали путем отключения части газовых горелок проходной печи; скорость нагрева путем подачи газа в рабочую зону печи.

Для сравнения результатов опробования часть колес этой же плавки обрабатывали по известному способу согласно технологической инструкции ТИ 153К-53-87.

Результаты опробования заявляемого способа в сравнении с известным приведены в табл. 1, 2, 3.

Таким образом, рекомендуемыми параметрами охлаждения и нагрева колес в процессе противофлокенной обработки являются: температура охлаждения 500-540оС; скорость охлаждения 2,0-2,5оС/мин; скорость нагрева 3,5-4,0оС/мин, при которых повышаются пластические свойства железнодорожных колес и сокращается на 30-35% энергоемкость процесса.

Похожие патенты RU2044072C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ЦЕЛЬНОКАТАНЫХ ЖЕЛЕЗНОДОРОЖНЫХ КОЛЕС 1997
  • Сидоров И.П.
  • Антипов Б.Ф.
  • Королев С.А.
  • Тарасова В.А.
  • Яндимиров А.А.
  • Баринова Г.П.
  • Волков А.М.
RU2133286C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЦЕЛЬНОКАТАНЫХ ЖЕЛЕЗНОДОРОЖНЫХ КОЛЕС 1997
  • Сидоров И.П.
  • Антипов Б.Ф.
  • Королев С.А.
  • Тарасова В.А.
  • Яндимиров А.А.
  • Пашолок И.Л.
  • Баринова Г.П.
  • Волков А.М.
RU2123405C1
Способ производства изделий типа колес и колец из среднеуглеродистой стали 1986
  • Тарасова Валентина Андреевна
  • Федорова Ирина Петровна
  • Валетов Михаил Серафимович
  • Антипов Борис Федорович
  • Шумилин Анатолий Васильевич
  • Конышев Аркадий Андреевич
SU1461573A1
СПОСОБ ТЕПЛОВОЙ ОБРАБОТКИ ЖЕЛЕЗНОДОРОЖНЫХ КОЛЕС 1995
  • Королев С.А.
  • Кондрушин А.И.
  • Валетов М.С.
  • Конышев А.А.
  • Антипов Б.Ф.
  • Яндимиров А.А.
  • Мазурин В.В.
RU2088678C1
Способ изготовления цельнокатанных железнодорожных колес 1992
  • Королев Сергей Александрович
  • Конышев Аркадий Андреевич
  • Антипов Борис Федорович
  • Валетов Михаил Серафимович
  • Мирошниченко Николай Григорьевич
  • Кузьмичев Геннадий Михайлович
  • Парышев Юрий Михайлович
  • Цюренко Владимир Николаевич
SU1836451A3
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ СТАЛЬНЫХ КОЛЕС 1997
  • Сидоров И.П.
  • Антипов Б.Ф.
  • Калинин А.Б.
  • Баринова Г.П.
  • Мазурин В.В.
  • Королев С.А.
  • Яндимиров А.А.
  • Пашолок И.Л.
  • Волков А.М.
  • Седышев И.А.
  • Ефимов И.В.
  • Цюренко В.Н.
  • Харитонов В.Б.
RU2124056C1
СПОСОБ ТЕРМИЧЕСКОЙ ПРОТИВОФЛОКЕННОЙ ОБРАБОТКИ ЖЕЛЕЗНОДОРОЖНЫХ КОЛЁС 2018
  • Савушкин Роман Александрович
  • Кякк Кирилл Вальтерович
  • Безобразов Юрий Алексеевич
  • Бройтман Олег Аркадьевич
  • Тереньев Максим Игоревич
RU2677295C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЖЕЛЕЗНОДОРОЖНЫХ КОЛЕС 1993
  • Узлов И.Г.
  • Тарасова В.А.
  • Валетов М.С.
  • Конышев А.А.
  • Антипов Б.Ф.
  • Королев С.А.
  • Волков А.М.
  • Кондрушин А.И.
RU2049588C1
СПОСОБ ПРОИЗВОДСТВА БАНДАЖЕЙ ИЗ ЗАЭВТЕКТОИДНЫХ СТАЛЕЙ 2001
  • Носов С.К.
  • Кузовков А.Я.
  • Крупин М.А.
  • Полушин А.А.
  • Калягин В.Н.
  • Сосна Г.В.
  • Двойников В.А.
  • Опарина А.А.
RU2203968C2
СПОСОБ ИЗГОТОВЛЕНИЯ ЦЕЛЬНОКАТАНЫХ ЖЕЛЕЗНОДОРОЖНЫХ КОЛЕС 1992
  • Баринова Г.П.
  • Узлов И.Г.
  • Мирошниченко Н.Г.
  • Валетов М.С.
  • Королев С.А.
  • Конышев А.А.
  • Антипов Б.Ф.
RU2049585C1

Иллюстрации к изобретению RU 2 044 072 C1

Реферат патента 1995 года СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ЦЕЛЬНОКАТАНЫХ ЖЕЛЕЗНОДОРОЖНЫХ КОЛЕС

Использование: при производстве железнодорожных колес и крупных заготовок деталей машин. Сущность: колесо нагревают до 600-650°С с выдержкой в течение 3-6 ч. В период выдержки осуществляют одноразовое охлаждение изделий до 500-540°С со скоростью 2,0-2,5°С/мин, последующий нагрев до исходной температуры со скоростью 3,5-4,0°С/мин и окончательное охлаждение. 3 табл.

Формула изобретения RU 2 044 072 C1

СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ЦЕЛЬНОКАТАНЫХ ЖЕЛЕЗНОДОРОЖНЫХ КОЛЕС, включающий противофлокенную обработку при 600-650oС с выдержкой в течение 3-6 ч и охлаждение, отличающийся тем, что, с целью повышения пластических свойств колес при сокращении энергоемкости процесса, в процессе выдержки осуществляют одноразовое охлаждение колес до 500-540oС со скоростью 2,0-2,5oС/мин с последующим нагревом со скоростью 3,5-4,0oС/мин до 600-650oС.

Документы, цитированные в отчете о поиске Патент 1995 года RU2044072C1

Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Производство черновых цельнокатаных колес
Паровозный золотник (байпас) 1921
  • Трофимов И.О.
SU153A1
ВМЗ, 1987, с.41-43.

RU 2 044 072 C1

Авторы

Мирошниченко Н.Г.

Кузьмичев М.В.

Перков О.Н.

Шаповал Е.А.

Шмаков Е.Н.

Антипов Б.Ф.

Баринова Г.П.

Волков А.М.

Конышев А.А.

Кравцов Б.Л.

Королев С.А.

Яндимиров А.А.

Даты

1995-09-20Публикация

1991-07-03Подача