СПОСОБ ИЗВЛЕЧЕНИЯ БЛАГОРОДНЫХ МЕТАЛЛОВ ИЗ ГЛИНОЗЕМНЫХ МАТЕРИАЛОВ И ОТХОДОВ ПРОИЗВОДСТВА Российский патент 1997 года по МПК C22B11/00 C22B7/00 

Описание патента на изобретение RU2083705C1

Изобретение относится к регенерации металлов платиновой группы из глиноземных материалов и отходов производства на основе глинозема, например, из отработанных катализаторов на основе глинозема, содержащих платину и применяющихся в нефтехимической промышленности при производстве бензина.

Известен способ извлечения платины и палладия из отработанных катализаторов на основе окиси алюминия, в котором металлы платиновой группы переводят в растворимые в воде хлориды путем хлорирования катализатора газообразным хлором, причем глинозем будучи устойчивым к хлору остается в нерастворимом виде. Хлорирование ведут в трубчатой печи при температуре 300-500oС. После хлорирования раствор отделяют от остатка, остаток тщательно отмывают горячей водой и раствором кислот. Из раствора металлы платиновой группы отделяют цементацией алюминием, магнием или другими неблагородными металлами [1]
Недостатком указанного способа является его большая экологическая опасность для окружающей среды и непосредственная опасность для человека в связи с высокими токсическими свойствами хлора (опасность для жизни человека).

Известен способ извлечения благородных металлов, например, платины из катализатора на основе глинозема, в котором в ванну с расплавленным алюминием дозами вводят криолит и в нем при 970-980oС расплавляют отработанный катализатор. При этом платина экстрагируется, а криолит насыщается глиноземом. Смесь алюминия и платины сливают в воду и получают гранулы, из которых алюминий выщелачивают 10-15% -ным раствором серной кислоты при температуре 100-105oС 4-5 ч [2]
Недостатком данного способа являются высокие энергетические затраты, связанные с необходимостью расплавления алюминия и последующего растворения в нем криолита при 970-980oС.

Известен также способ извлечения металлов платиновой группы из отработанных катализаторов, в котором смешивают катализатор, медь и/или окись меди, флюс и восстанавливающий компонент. Затем смесь нагревают и плавят для образования слоя меди, в котором абсорбируется платина, и слоя (другого) оксида. Слой металлической меди отделяют и подают в этот слой кислород или воздух с целью образования двух слоев слоя частично окисленной меди и слоя металлической меди с высоким содержанием платины, последний слой отделяют.

Недостатком указанного способа является необходимость применения в нем дорогого оборудования для обеспечения плавки компонентов исходной смеси и высокие энергетические затраты. Кроме того, данный способ представляет опасность для окружающей среды и человека [3]
Предлагаемый способ в отличие от прототипа обеспечивает комплексную переработку глиноземных материалов и отходов, содержащих благородные металлы, например платину, с получением гранулированного порошка с содержанием благородного металла до 80% и алюминатного раствора, который отводится на дальнейшую переработку. Способ позволяет значительно сократить энергетические затраты на получение благородного металла, упростить и удешевить технологическое оборудование, снизить загрязнение окружающей среды выделяющимися в ходе процесса вредными газами.

Указанный технический результат достигается тем, что в способе извлечения благородных металлов из глиноземных материалов и отходов производства, содержащем процесс смешения глиноземного материала, содержащего благородный металл, с флюсом, в качестве флюса используют щелочь. А полученную смесь спекают при температуре 500-850oС и выдерживают до затвердения спека. Затем спек обрабатывают водой и полученную в результате обработки массу отстаивают до ее разделения на осадок, содержащий благородный металл, и алюминатный раствор. Осадок отводят и обрабатывают кислотой с получением состава с высоким содержанием благородного металла. Алюминатный раствор подают на дальнейшую переработку.

На чертеже представлена схема реализации предлагаемого способа.

Исходные продукты глиноземный материал, например, отработанный катализатор на основе глиноземного материала с платиной, и флюс, в качестве которого используют щелочь. Перед смешением материал и щелочь взвешивают для получения необходимого соотношения компонентов смеси. Полученную смесь вводят в печь и нагревают до 500-850oС. При этом смесь спекается и происходит реакция
Al2O3 + 2NaOH ___→ 2NaAlO2 + H2O
Далее спек извлекают из печи и обрабатывают водой при температуре 70-100oС с выделением нерастворимого осадка. Массу, исходно содержащую спек и воду, отстаивают до полного расслоения ее на осадок, содержащий благородный металл (8-10%), и алюминатный раствор. Последний сливают и отводят на дальнейшую переработку, а осадок промывают и выщелачивают кислотой, например, щавелевой. В результате выщелачивания получают осадок, который отводят. Далее состав подвергают традиционной обработке сушат, а затем прокаливают. В результате этой финишной стадии получают мелкодисперсный порошок с содержанием благородного металла до 80%
Пример 1. Исходными материалами являются отработанный катализатор на основе глинозема (использовался при реформинге нефти) с содержанием платины 0,5% и щелочь NaOH. Определяли влияние соотношения между массой катализатора и массой щелочи на эффективность процесса. Брались следующие соотношения между массами указанных компонентов: 1:1; 1:2; 1:3.

Было установлено, что соотношение 1:2 между Аl2O3 и NaOH является оптимальным.

Так например, в ходе экспериментов брали 0,5 кг катализатора и 0,75 кг щелочи.

Смесь помещали в термическую (электрическую) печь и нагревали приблизительно в течение 2 ч до температуры порядка 800oС. В результате нагревания смесь, превратили в спек, обеспечив удаление остатков водяного пара,
Al2O3 + 2NaОH ----L 2NaAlO2 + H2O
Спек массой 1,15 кг растворили в 1,8 л воды.

После отстоя желтый алюминатный раствор слили. А осадок высушили, взвесили. Его масса 85 г (0,085 кг), что составило 17% от исходной массы катализатора.

После кислотной обработки масса готового продукта 45 г, тогда как при соотношении 1:2 масса готового продукта составляла меньше 10 г.

Таким образом, уменьшение количества щелочи меньше соотношения 1:2 (глинозем-щелочь) приводило к увеличению массы нерастворимого осадка, а увеличение щелочи, свыше названного соотношения, не улучшало растворимости глинозема и приводило к нерациональному возрастанию ее расхода.

Пример 2. Была экспериментально установлена зависимость времени проведения и полноты процесса от температуры. Для каждой температуры было установлено минимальное время выдержки спека в печи.

Например, брали 30 кг катализатора, 60 кг щелочи. Смесь помещали в термическую печь и нагревали приблизительно в течение 2 ч до 800oС. После выгрузки спек обрабатывали водой. Массу отстаивали в течение 1,5 ч до получения осадка кремового цвета, содержащего платину, и раствора, содержащего алюминаты. Раствор слили, а осадок промыли водой для удаления остаточной щелочи с целью уменьшения расхода кислоты на следующем этапе. Взяли 4-5 кг щавелевой кислоты. В емкость с осадком, содержание платины в котором составляло 8-10% добавили до 30 л воды и нагревали до кипения, затем в емкость порциями добавляли щавелевую кислоту. В результате реакции образовался осадок черного цвета, для отстаивания которого необходимо около получаса. Полученный осадок еще раз промыли водой и просушили до получения порошка массой 200 г. Далее этот порошок прокалили. Содержание платины в образовавшейся массе составило 80%
Уменьшение температуры до 500oС приводит к увеличению времени выдержки до 3 ч, а ее увеличение свыше 800oС влечет за собой возрастание энергетических затрат. не приводя при этом к увеличению эффективности процесса.

Таким образом, на основании изложенного следует, что предлагаемый способ по сравнению с прототипом является более экономичным, так как не требуется плавить катализатор, для реализации способа применяют более простое, а, следовательно, более дешевое оборудование, нет необходимости в использовании меди. Предложенный способ гораздо более безопасен для окружающей среды, поскольку исключен процесс плавления, сопровождающийся выделением вредных газов.

Использование в способе простого оборудования и недорогих компонентов - щелочи и кислоты делает его высокотехнологичным и обеспечивает успешное применение в промышленности.

Похожие патенты RU2083705C1

название год авторы номер документа
СПОСОБ ИЗВЛЕЧЕНИЯ ПЛАТИНЫ И/ИЛИ ПАЛЛАДИЯ ИЗ ОТРАБОТАННЫХ КАТАЛИЗАТОРОВ 2000
  • Кадеева Н.Л.
  • Кащеев А.Н.
  • Шрагина Г.М.
  • Полункин Я.М.
  • Минаев М.С.
RU2175266C1
СПОСОБ ИЗВЛЕЧЕНИЯ ПЛАТИНЫ ИЗ ШЛАМА, ПОЛУЧАЕМОГО ПРИ РАСТВОРЕНИИ ПЛАТИНОСОДЕРЖАЩЕГО ЧУГУНА В СЕРНОЙ КИСЛОТЕ 2011
  • Лобанов Владимир Геннадьевич
  • Семина Ирина Николаевна
  • Кузас Евгений Александрович
  • Егиазарьян Антон Константинович
  • Соловьев Максим Викторович
  • Евдокимов Андрей Александрович
RU2488638C1
Способ переработки красных шламов глиноземного производства 2023
  • Сенченко Аркадий Евгеньевич
  • Аксёнов Александр Владимирович
  • Рыбкин Сергей Георгиевич
RU2803472C1
СПОСОБ ИЗВЛЕЧЕНИЯ ПАЛЛАДИЯ ИЗ ОТРАБОТАННЫХ КАТАЛИЗАТОРОВ НА ОСНОВЕ ОКСИДА АЛЮМИНИЯ 1996
  • Громов О.Г.
  • Куншина Г.Б.
  • Кузьмин А.П.
  • Локшин Э.П.
  • Калинников В.Т.
RU2095442C1
СПОСОБ ПЕРЕРАБОТКИ АЛЮМОПЛАТИНОВЫХ КАТАЛИЗАТОРОВ, ПРЕИМУЩЕСТВЕННО СОДЕРЖАЩИХ РЕНИЙ 2001
  • Шипачев В.А.
  • Горнева Г.А.
RU2204619C2
СПОСОБ ПЕРЕРАБОТКИ ОТРАБОТАННОЙ УГОЛЬНОЙ ФУТЕРОВКИ АЛЮМИНИЕВЫХ ЭЛЕКТРОЛИЗЕРОВ 2000
  • Барановский В.В.
  • Барановский А.В.
  • Ланкин В.П.
  • Кононов М.П.
  • Липинский Л.П.
  • Богомолов А.Н.
  • Тесля В.Г.
RU2199488C2
СПОСОБ ИЗВЛЕЧЕНИЯ ПЛАТИНОВЫХ МЕТАЛЛОВ ИЗ ОТРАБОТАННЫХ КАТАЛИЗАТОРОВ НА НОСИТЕЛЯХ ИЗ ОКСИДА АЛЮМИНИЯ 2013
  • Сонькин Владимир Семенович
  • Ковалев Сергей Васильевич
  • Гельман Геннадий Ефимович
  • Муралеев Адиль Ринатович
  • Маганов Дмитрий Дмитриевич
RU2564187C2
СПОСОБ ПЕРЕРАБОТКИ АЛЮМИНИЙСОДЕРЖАЩЕГО СЫРЬЯ 2000
  • Липин В.А.
  • Шмаргуненко А.Н.
  • Беликов Е.А.
  • Кузнецов А.А.
  • Лазарев В.Г.
  • Макаров С.Н.
RU2197429C2
СПОСОБ ПЕРЕРАБОТКИ УГЛЕРОДИСТОГО ШЛАМА, ВЫВОДИМОГО ИЗ СИСТЕМЫ ЭЛЕКТРОЛИТИЧЕСКОГО ПОЛУЧЕНИЯ АЛЮМИНИЯ 1999
  • Барановский В.В.
  • Барановский А.В.
RU2167210C2
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОДИСПЕРСНОГО ГИДРОКСИДА АЛЮМИНИЯ 2007
  • Сенюта Александр Сергеевич
  • Давыдов Иоан Владимирович
RU2355638C1

Реферат патента 1997 года СПОСОБ ИЗВЛЕЧЕНИЯ БЛАГОРОДНЫХ МЕТАЛЛОВ ИЗ ГЛИНОЗЕМНЫХ МАТЕРИАЛОВ И ОТХОДОВ ПРОИЗВОДСТВА

Использование: касается извлечения благородных металлов из глиноземных материалов и отходов производства, преимущественно из отработанных катализаторов на основе глинозема, содержащих платину. Сущность: исходный материал смешивают с щелочью, спекают смесь при 500-850•С, а затем полученный спек обрабатывают водой. В результате взаимодействия спека с водой выпадает осадок, содержащий благородный металл. Осадок отделяют от раствора алюминатов и обрабатывают кислотой с получением нерастворимого состава, содержащего благородный металл с концентрацией до 30%. Дальнейшей обработкой названного состава концентрацию благородного металла доводят до более чем 80%. 3 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 083 705 C1

1. Способ извлечения благородных металлов из глиноземных материалов и отходов производства, преимущественно из отработанных катализаторов, включающий смешение измельченного материала с флюсом, отличающийся тем, что в качестве флюса используют щелочь, а полученную смесь спекают при 500 - 850oС и выдерживают до затвердевания спека, спек обрабатывают водой и полученную массу разделяют на остаток, содержащий благородный металл, и раствор алюминатов, осадок обрабатывают кислотой с получением нерастворимого состава, содержащего благородный металл, с последующей его промывкой водой, сушкой и прокалкой, и раствор алюминатов отводят. 2. Способ по п.1, отличающийся тем, что в качестве кислоты используют щавелевую кислоту. 3. Способ по любому из п.1 или 2, отличающийся тем, что спек обрабатывают водой при 70 100oС и отстаивают до разделения полученной массы на осадок, содержащий благородный металл, и раствор алюминатов. 4. Способ по п.1, отличающийся тем, что массовое соотношение щелочи и катализатора составляет 1 1 3.

Документы, цитированные в отчете о поиске Патент 1997 года RU2083705C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Способ извлечения платины и палладия из отработанных катализаторов на основе окиси алюминия 1960
  • Эгон-Рюдигер Штрих
  • Хорст Бервальд
SU139837A1
Машина для добывания торфа и т.п. 1922
  • Панкратов(-А?) В.И.
  • Панкратов(-А?) И.И.
  • Панкратов(-А?) И.С.
SU22A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
СПОСОБ ИЗВЛЕЧЕНИЯ БЛАГОРОДНЫХ МЕТАЛЛОВ, 0
SU171116A1
Машина для добывания торфа и т.п. 1922
  • Панкратов(-А?) В.И.
  • Панкратов(-А?) И.И.
  • Панкратов(-А?) И.С.
SU22A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Устройство для поштучной подачи изделий 1974
  • Шапран Валентин Захарович
  • Скорик Григорий Иванович
  • Ахмановский Моисей Леонидович
SU512959A1
Машина для добывания торфа и т.п. 1922
  • Панкратов(-А?) В.И.
  • Панкратов(-А?) И.И.
  • Панкратов(-А?) И.С.
SU22A1

RU 2 083 705 C1

Авторы

Баум Я.М.

Юров С.С.

Борисков Ю.В.

Даты

1997-07-10Публикация

1995-12-13Подача