СПОСОБ ПОЛУЧЕНИЯ ОКИСЛЕННОГО ГРАФИТА Российский патент 1997 года по МПК C01B31/04 

Описание патента на изобретение RU2090498C1

Изобретение относится к технологии углеграфитовых материалов, в частности, к получению пенографита, который может быть использован как компонент композиционных материалов, для изготовления гибкой графитовой фольги и т.д.

Известен способ получения окисленного графита обработкой 100 г природного графита смесью на основе 300 г концентрированной (94-96%) H2SO4 и 100 г концентрированной (60-65% ) HNO3 в течение 2 часов; затем твердую фазу отделяют от жидкости и промывают 3 л H2O. В результате получают окисленный графит с привесом в 2 раза большим по сравнению с окисленным графитом, полученным традиционным способом без предварительного отделения окислительного раствора [1]
Недостатком известного способа является то, что пенографит, полученный из этого окисленного графита, имеет недостаточно высокую степень расширения, а окисленный графит имеет высокую коррозионную активность.

Известен способ получения пенографита, согласно которому 100 в.ч. графита обрабатывают 10-35 в.ч. окислительного раствора на основе 96% H2SO4 + 70% HNO3 при массовом отношении HNO3 H2SO4 0,06-0,7 в пересчете на безводные кислоты; после этого, минуя стадию промывки водой, при термообаботке получают пенографит со степенью расширения 100-195 см3/г и насыпной плотностью 5-10 г/л [2]
Недостатками указанного способа являются высокая коррозионная активность и неоднородность пенографита, а также очень большое количество газов и паров (H2SO4, SO2, SO3, H2O), выделяющихся при термообработке, что требует соответствующих мер по защите окружающей среды, людей и аппаратуры.

Наиболее близким техническим решением является способ получения некоррозионного окисленного графита для пенографита, заключающийся в обработке порошка исходного природного графита смесью 96% H2SO4 (в количестве 3 кг) с 0,2 кг 95% HNO3 при отношении H2SO4 HNO3 0,07, последующей отмывке до pH 7 и сушке, из которого при термообработке при 400-1000oC в присутствии газообразного аммиака получают пенографит с насыпной плотностью 5 кг/м3 [3]
Недостатками способа являются очень большой расход воды, необходимый для отмывки окисленного графита до pH 7, а также использование при термообработке газообразного аммиака, что требует сложного аппаратурного оформления процесса и повышенной безопасности, что удорожает указанный способ.

Технической задачей предлагаемого изобретения является снижение содержания коррозионного агента в окисленном графите, а также снижение материальных затрат.

Поставленная задача решается тем, что в способе получения окисленного графита для пенографита, включающем обработку частиц природного графита смесью концентрированной серной кислоты с концентрированной азотной кислотой, промывку образовавшегося соединения внедрения в графит водой и последующую сушку, используют азотную кислоту в виде меланжа производства азотной кислоты, содержащего 7,5-15 мас. серной кислоты и 3,5-5 мас. воды при массовом отношении меланжа к серной кислоте 1-2,3 в пересчете на безводные кислоты.

Поставленная задача достигается также тем, что промывку водой образовавшегося соединения внедрения в графит ведут до pH промывных вод 2-3 и содержания серы < 2 мас. в окисленном графите.

Массовое отношение меланжа к H2SO4 составляет 1-2,3 в пересчете на безводные кислоты. Увеличение содержания меланжа в окислительной смеси выше отношения 2,3 нежелательно, так как приводит к увеличению насыпной плотности пенографита, получаемого из окисленного графита, до 7-10 г/л. Уменьшение содержания меланжа менее отношения 1 также нецелесообразно, так как приводит к повышенному содержанию коррозионного агента S > 2 мас. в окисленном графите, что ухудшает качество продукта.

Изменения содержания серы в окисленном графите и его степени вспенивания обусловлены составом окисленной смеси. Как показали наши исследования, в результате обработки порошка природного графита смесью меланжа и моногидрата серной кислоты получается смешанное соединение внедрения в графит серной и азотной кислот. В этом случае азотная кислота выступает не только в качестве окислителя для интеркалирования H2SO4 в графит, а также и в качестве интеркалирующего агента. В связи с этим чем больше содержания в окислительной смеси HNO3, тем больше ее внедряется в межслоевое пространство графита и соответственно меньшее количество бисульфатионов содержится в соединении внедрения. На стадии гидролиза и промывки концентрированная HNO3 легко вымывается из соединения внедрения, чем H2SO4, а самой серной кислоты там значительно меньше. Поэтому в конечном итоге продукт, получаемый после окислительной обработки, гидролиза и промывки, содержит меньшее количество остаточной серной кислоты и менее коррозионно активен.

Промывку графита водой согласно изобретению следует проводить до pH промывных вод, находящейся в интервале 2-3. При pH <2 в окисленном графите возрастает содержание остаточных кислот, что приводит к возрастанию коррозионной активности окисленного графита; при pH > 3 содержание S в окисленном графите находится на уровне 1-1,5% но при этом возрастает насыпная плотность пенографита и количество воды, используемой для промывки.

Отмывка до pH 2-3 значительно сокращает расход воды и, следовательно, количество кислых отходов.

В качестве компонентов окислительной смеси предлагаем использовать меланж кислотный (ГОСТ 1500-78) продукт производства азотной кислоты и моногидрат серной кислоты. Таким образом, предлагаемый способ приводит к снижению коррозионной активности окисленного графита при сохранении удовлетворительной степени вспенивания, снижению материальных затрат за счет использования меланжа и сокращения расхода воды и объема кислых отходов, подлежащих очистке и утилизации.

Пример 1. В реактор объемом 3 м3 (материал Ti) заливают 680 л моногидрата H2SO4 с концентрацией 98% и 970 л меланжа, содержащего 89% HNO3, 7,5% H2SO4, 3,5% H2O, и перемешивают в течение 20 мин. Затем добавляют 500 кг природного графита марки ГТ (ГОСТ 4596-75) и проводят химическую обработку графита при перемешивании (ω 60 об/мин) в течение 1,5 часа. Массовое отношение меланж: H2SO4 в пересчете на безводные кислоты составляет 1. Затем реакционную смесь подают в емкость (V 20 м3), наполненную холодной водой (Tводы <20oC), и перемешивают в течение 30 мин, затем отстаивают 30 мин и 2/3 осветленного раствора декантируют, а оставшуюся часть подают на фильтр, отфильтровывают твердую фракцию от жидкости, далее промывают осадок горячей H2O (Tводы 50-60oC) до pHпромыв.вод 2. Полученный окисленный графит сушат при 90oC и анализируют на содержание остаточной серы по ГОСТу 17818.17-90 и степень вспенивания (ТУ 5728-006-132 67785). Содержание S в окисленном графите составило 2,0 мас. Термообрабатывают окисленный графит на воздухе в муфеле при 1000oC в течение 10 с и получают пенографит с насыпной плотностью 2,7-3,0 г/л. Содержание S в пенографите 0,11%
Результаты остальных опытов сведены в таблицу.

Как показали результаты опытов, представленные в таблице, варьирование соотношения меланж серная кислота и pH позволяет получать пенографит с содержанием коррозионного агента S менее 0,05-0,1 мас. и насыпной плотностью в диапазоне 3-5 г/л. Кроме того, отмывка окисленного графита до pH=2,5-3,0 позволяет сократить расход воды в 3 раза по сравнению с отмывкой до pH=7.

Похожие патенты RU2090498C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ОКИСЛЕННОГО ГРАФИТА 1996
  • Авдеев В.В.
  • Мартынов И.Ю.
  • Никольская И.В.
  • Монякина Л.А.
  • Денисов А.К.
  • Логинов Н.Д.
  • Сеземин В.А.
RU2089495C1
СПОСОБ ПОЛУЧЕНИЯ ОКИСЛЕННОГО ГРАФИТА 1999
  • Авдеев В.В.
  • Шкиров В.А.
  • Мартынов И.Ю.
  • Никольская И.В.
  • Максимова Н.В.
  • Сеземин В.А.
  • Сеземин А.В.
  • Пантюхин М.Л.
  • Бабич И.И.
  • Сорокина Н.Е.
RU2161123C1
СПОСОБ ПОЛУЧЕНИЯ ОКИСЛЕННОГО ГРАФИТА 1997
  • Авдеев В.В.
  • Бабич И.И.
  • Денисов А.К.
  • Сеземин В.А.
  • Логинов Н.Д.
  • Шкиров В.А.
  • Ионов С.Г.
  • Никольская И.В.
  • Монякина Л.А.
  • Мартынов И.Ю.
  • Сорокина Н.Е.
RU2118941C1
ОГНЕЗАЩИТНЫЙ МАТЕРИАЛ ДЛЯ ПОКРЫТИЙ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 1995
  • Годунов И.А.
  • Авдеев В.В.
  • Кузнецов Н.Г.
  • Ревякин Б.И.
  • Яковлев Н.Н.
  • Никольская И.В.
  • Горюнов И.Т.
  • Преснов Г.В.
  • Саков Б.А.
  • Алексеев А.А.
RU2105029C1
СПОСОБ ПОЛУЧЕНИЯ ИНТЕРКАЛИРОВАННОГО ГРАФИТА 2010
  • Сорокина Наталья Евгеньевна
  • Годунов Игорь Андреевич
  • Свиридов Александр Афанасьевич
  • Авдеев Виктор Васильевич
RU2443625C1
СПОСОБ ПОЛУЧЕНИЯ БИСУЛЬФАТА ГРАФИТА И РЕАКТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1995
  • Финаенов А.И.
  • Авдеев В.В.
  • Краснов В.В.
  • Апостолов С.П.
  • Монякина Л.А.
  • Никольская И.В.
RU2083723C1
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ПЕНОГРАФИТА 1996
  • Авдеев В.В.
  • Ионов С.Г.
  • Козлов А.В.
  • Никольская И.В.
  • Павлов А.А.
  • Саков Б.А.
  • Ломакин Б.В.
RU2102315C1
СПОСОБ ПОЛУЧЕНИЯ ИНТЕРКАЛИРОВАННОГО ГРАФИТА 2010
  • Авдеев Виктор Васильевич
  • Сорокина Наталья Евгеньевна
RU2427532C1
СПОСОБ ПОЛУЧЕНИЯ ТЕРМОРАСШИРЕННОГО ГРАФИТА И ФОЛЬГА НА ЕГО ОСНОВЕ 2011
  • Сорокина Наталья Евгеньевна
  • Малахо Артем Петрович
  • Филимонов Станислав Владимирович
  • Годунов Игорь Андреевич
  • Павлов Александр Алексеевич
  • Авдеев Виктор Васильевич
RU2480406C2
СПОСОБ ПОЛУЧЕНИЯ ОКИСЛЕННОГО ГРАФИТА 2014
  • Юдина Татьяна Федоровна
  • Смирнов Николай Николаевич
  • Братков Илья Викторович
  • Ершова Татьяна Вениаминовна
  • Бейлина Наталия Юрьевна
  • Маянов Евгений Павлович
  • Елизаров Павел Геннадьевич
RU2561074C1

Иллюстрации к изобретению RU 2 090 498 C1

Реферат патента 1997 года СПОСОБ ПОЛУЧЕНИЯ ОКИСЛЕННОГО ГРАФИТА

Использование: получение гибкой графитовой фольги и композиционных материалов на основе пенографита для теплоэнергетики, авиакосмической и атомной техники, химической и металлургической промышленности. Сущность изобретения: Порошок природного графита обрабатывают окислительной смесью на основе меланжа производства азотной кислоты, содержащего 7,5-15 мас.% H2SO4, 3,5 мас. % H2O, остальное HNO3, и моногидрата серной кислоты при массовом отношении меланжа к H2SO4 1-2,3 в пересчете на безводные кислоты. Гидролиз и промывку водой осуществляют до pH промывных вод 2-3 и получения окисленного графита с содержанием коррозионной S менее 2 мас.%. Содержание S в пенографите не более 0,11 мас.%, насыпная плотность пенографита 2,5-5 г/л. 1 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 090 498 C1

1. Способ получения окисленного графита для пенографита, включающий обработку частиц природного графита смесью концентрированной серной кислоты с концентрированной азотной кислотой, промывку образовавшегося соединения внедрения в графит водой и последующую сушку, отличающийся тем, что используют азотную кислоту в виде меланжа производства азотной кислоты, содержащего 7,5 15,0 мас. серной кислоты и 3,5 5,0 мас. воды при массовом отношении меланжа к серной кислоте 1,0 2,3 в пересчете на безводные кислоты. 2. Способ по п. 1, отличающийся тем, что промывку водой соединения внедрения в графит ведут до pH<Mv>промывных вод<D> 2 3 и содержания серы менее 2,0 мас. в окисленном графите.

Документы, цитированные в отчете о поиске Патент 1997 года RU2090498C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Устройство для охлаждения водою паров жидкостей, кипящих выше воды, в применении к разделению смесей жидкостей при перегонке с дефлегматором 1915
  • Круповес М.О.
SU59A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Патент США N 4895713, кл
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Способ получения некоррозионно-активного термически расширенного графита 1991
  • Пустовалов Юрий Пантелеевич
  • Маслов Владимир Александрович
SU1813711A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1

RU 2 090 498 C1

Авторы

Авдеев В.В.

Воронкина А.В.

Мартынов И.Ю.

Сорокина Н.Е.

Никольская И.В.

Монякина Л.А.

Денисов А.К.

Логинов Н.Д.

Сеземин В.А.

Даты

1997-09-20Публикация

1996-02-22Подача