СТАЛЬ Российский патент 1998 года по МПК C22C38/28 

Описание патента на изобретение RU2122045C1

Изобретение относится к металлургии, точнее к сплавам черных металлов, и предназначено для использования при изготовлении магистральных труб из экономнолегированной стали для перекачки нефтепродуктов в условиях северных широт с повышенным ресурсом эксплуатационных трубопроводов, их ремонтопригодности.

Надежность эксплуатации трубопроводов для перекачки нефти обеспечивается двумя основными условиями.

1. Стойкостью к абразивному износу внутренней поверхности труб из-за наличия в перекачиваемых нефтепродуктах механических примесей.

2. Способностью материала труб противостоять сульфидному коррозионному растрескиванию в среде, обогащенной сероводородом.

Механизм сульфидного коррозионного растрескивания представляет собой разрушение стали под воздействием нагрузки (давление, внутренние напряжения) и сероводородной среды по межзеренным участкам и обусловлено проникающим в сталь водородом, скапливающимся в местах трехосного напряженного состояния - границы зерен, карбидные и сульфидные частицы и др. [1]. При этом, чем больше нагрузка, крупнее зерно, чем больше межзеренные участки загрязнены неметаллическими включениями, сульфидными и интерметаллидными пленками и т. д., тем более развитие получает процесс коррозионного разрушения стали.

Известна сталь 12МХ, содержащая углерод, марганец, кремний, хром, молибден, титан и железо в следующем соотношении ингредиентов, мас.%:
Углерод - 0,09 - 0,16
Марганец - 0,40 - 0,70
Кремний - 0,17 - 0,37
Хром - 0,40 - 0,70
Молибден - 0,40 - 0,60
Железо - Остальное [2]
Указанная сталь обладает удовлетворительным сопротивлением истиранию за счет значительного содержания в ней дорогостоящего молибдена.

Однако недостатком этой стали является то, что изготовленные из нее трубы имеют низкую стойкость к сульфидному коррозионному растрескиванию при контакте со средой, обогащенной сероводородом. Неметаллические включения данной стали представляют собой оксиды и оксисульфиды строчечные 2,0 - 2,5 балла, а также сульфидные пленки, расположенные по границам зерен металла.

Величина зерна термообработанной стали 12МХ составляет 3-4 балла по ГОСТ 5639-82.

Кроме того, при ремонте трубопроводов из стали 12МХ посредством сварки без подогрева в условиях низких температур наблюдалось образование трещин из-за развития явлений подкаливания вблизи сварного шва. Это требовало дополнительных временных и энергетических затрат по обеспечению предварительного подогрева свариваемых участков и их последующего замедленного охлаждения после сварки.

Наиболее близкой к предлагаемому решению по технической сущности и достигаемому результату является конструкционная сталь [3], содержащая углерод, марганец, кремний, хром, молибден, алюминий, титан, ванадий (бор, азот) и железо в следующем соотношении ингредиентов, мас.%:
Углерод - 0,15 - 0,40
Марганец - 0,30 - 1,5
Кремний - 0,01 - 0,50
Хром - 0,20 - 1,50
Молибден - 0,05 - 0,70
Алюминий - 0,01 - 0,10
Титан - 0,005 - 0,05
Ванадий - 0,01 - 0,10
Железо - Остальное
Эта сталь принята за прототип.

Данная сталь обладает более высокой стойкостью к сульфидному коррозионному растрескиванию за счет дополнительного введения алюминия, ванадия и титана. Легирование алюминием и ванадием совместно с микролегированием титаном измельчает зерно стали (5 - 6 баллов), задает сложный мелкодисперсный характер Н.В., значительно снижает образование пленочных сульфидных включений по границам зерен. Неметаллические включения представляют собой сложные карбонитриды (0,5 балла) и оксисульфиды округлой формы ( 0,5 - 1,0 балла) расположенные равномерно по границам и внутри зерна.

Однако при легировании данной стали по содержанию алюминия до значений, превышающих 0,07%, наблюдается образование интерметаллидных пленок по границам зерен, металла, что снижает стойкость стали к коррозионному рестрескиванию.

При легировании данной стали по содержанию углерода, марганца и молибдена ближе к верхнему пределу наблюдается более высокая абразивная износостойкость, чем у стали 12МХ, однако, при тех же условиях резко повышается стоимость стали, снижается ремонтопригодность трубопроводов посредством сварки, поскольку указанные выше элементы увеличивают прокаливаемость стали, что вызывает образование трещин в околошовной зоне и делает непригодной данную сталь для сварных труб в условиях низких температур без проведения дополнительных мероприятий по подогреву околошовной зоны до и после сварки.

Задачей изобретения является повышение стойкости труб к сульфидному коррозионному растрескиванию в сероводородной среде с одновременным обеспечением ремонтопригодности посредством сварки в условиях низких температур и стойкости к абразивному износу внутренней поверхности труб.

Поставленная задача достигается благодаря тому, что в сталь, содержащую углерод, кремний, марганец, хром, молибден, алюминий, титан и железо дополнительно введен церий в следующем соотношении ингредиентов, мас%:
Углерод - 0,06 - 0,13
Кремний - 0,15 - 0,40
Марганец - 0,30 - 0,60
Хром - 0,40 - 0,70
Молибден - 0,08 - 0,15
Алюминий - 0,01 - 0,07
Титан - 0,05 - 0,09
Церий - 0,002 - 0,05
Железо - Остальное.

При этом содержание церия, титана и алюминия соответствуют условию
[Ce]≥2,5•10-4([Al]+0,8[Ti]),
где
[Ce] , [Al] , [Ti] - содержание в стали церия, алюминия и титана соответственно.

Введение алюминия и титана в сталь в заявляемых пределах обеспечивает ее раскисленность, мелкозернистость и дисперсное (равномерное) распределение оксидов и нитридов алюминия и титана по объему металла, что повышает его вязкостые свойства и в совокупности с низким содержанием углерода улучшает свариваемость стали [4].

Введение церия в сталь в заявляемых пределах обеспечивает чистоту границ зерен металла по сульфидным (в т.ч. пленочным) включениям. Из-за большого сродства церия к сере происходит связывание серы в неметаллические включения глобулярной формы, располагающиеся внутри зерен металла. Чистота границ зерен металла и сферическая форма включений обеспечивает высокую стойкость стали к сульфидному коррозионному растрескиванию [5].

Однако, так как церий является активным раскислителем, первоначально возможен механизм связывания церия в окислы. Тогда по отношению к сере церий будет в пассивной форме и образование сульфидов церия с распределением их внутри зерен металла происходить не будет.

Для устранения этого недостатка кислород в стали предварительно связывают другими раскислителями, например алюминием и титаном. При этом, как показали проведенные эксперименты, содержание церия, алюминия и титана в заявляемой стали должно отвечать следующему соотношению.

[Ce]≤2,5•10-4 ([Al] + 0,8[Ti]),
где
[Ce], [Al], [Ti] - процентное содержание церия, алюминия и титана в стали;
(2,5•10-4) - коэффициент пропорциональности;
0,8 - коэффициент способности образования окислов титана по отношению к алюминию приблизительно равен отношению энергий Гиббса (изобарного потенциала) образования оксидов алюминия и титана при 1600oC [6].

Исходя из вышеуказанного соотношения при введении алюминия и титана на верхних заявляемых пределах для связывания и распределения серы в виде неметаллических включений сферической формы внутри зерен металла необходимое количество церия должно быть не менее 0,014%. При содержании церия в первом случае меньше 0,002%, во втором - меньше 0,014% не обеспечит необходимой очистки зерен металла при кристаллизации от серы, т.к. значительная часть введенного церия окажется связанной в окислы и активной формы церия будет недостаточно. Это приводит к снижению стойкости стали к сульфидному коррозионному растрескиванию.

Введение алюминия и титана в сталь ниже заявляемых пределов не приводит к измельчению зерна и оказывается недостаточным для предварительного раскисления стали (для защиты церия от кислорода).

Увеличение размеров зерна увеличивает прокаливаемость, что снижает свариваемость при низких температурах, а также отрицательно сказывается на стойкость стали к сульфидному сероводородному растрескиванию.

Введение алюминия и титана в сталь выше заявляемых пределов приводит к образованию интерметаллидных пленок по границам зерен металла и крупным, неравномерно расположенным по объему металла, оксидам и нитридам, что снижает стойкость к сероводородному растрескиванию.

Введение церия в сталь ниже 0,002% не приводит к заметному увеличению стойкости к сероводородному растрескиванию, а присадка церия, превышающая заявляемый предел, приводит к образованию, так называемой, цериевой неоднородности, снижающей вязкостные свойства стали при низких температурах.

Исследование совместного влияния церия, алюминия и титана производили следующим образом: в лабораторной индукционной печи емкостью 50 кг провели две плавки заявляемой стали с разливкой металла в слитки массой 5 кг, при этом алюминий, церий и титан присаживали в каждый слиток отдельно в различных количествах и соотношениях (алюминий вводили в виде проволоки в струю металла, титан вводили на дно изложницы в виде крупки ферротитана, церий вводили в виде порошка ферроцерия по наполнении 1/2 высоты изложницы). Кроме того, в качестве контрольных произведены плавки известных сталей.

Из подприбыльных частей слитков отрезали пробы на химический анализ. Из тела слитков методом свободной ковки ковались пластины размером 100•150•15 мм. Пластины отжигались и фрезеровались до толщины 10 мм. Стойкость стали против сульфидного коррозионного растрескивания под напряжением проверяли по методике NACE TM-01-77 на гладких образцах в ячейках в водном растворе, насыщенном сероводородом. Оценивали пороговое напряжение, ниже которого не происходит разрушения образцов при испытании под нагрузкой в течение 720 часов.

Свариваемость определяли путем электросварки охлажденных до -30oC и заневоленных образцов без подогрева с последующей магнитно-порошковой дефектоскопией шва и околошовных зон на наличие трещин.

Стойкость стали к абразивному износу определяли по косвенному признаку - твердости закаленной стали.

Химический состав и результаты испытаний приведены в таблице.

По результатам проведенных исследований определен заявляемый химический состав стали и проведена опытно-промышленная плавка. Сталь выплавляли в 65-тонной мартеновской печи совмещенным процессом. При этом в мартеновской печи приготовляли жидкую стальную заготовку с определенным содержанием углерода, марганца, фосфора, молибдена, а раскисление и легирование кремнием, хромом, марганцем и рафинирование металла производили при выпуске плавки в ковш жидкими лигатурой и синтетическим шлаком, выплавленными в электропечи емкостью 10 т. Алюминий давали в струю металла, ферротитан - в ковш по наполнению 1/3 высоты ковша, ферроцерий давали в промежуточный ковш во время разлива стали на МНЗЛ. Сталь разливали в непрерывнолитые заготовки сечением 450•540 мм. Заготовки подковывались на трубную заготовку ⊘ 400 мм и отправлялись на трубопрокатный завод, где из них были изготовлены трубы диаметром 325 мм и отправлены на промыслы.

Из таблицы видно, что применение заявляемой стали (варианты 2, 4, 12, 14, 17) обеспечивают по сравнению с известными сталями стойкость стали к сульфидному коррозионному растрескиванию, хорошую свариваемость в условиях низких температур с одновременным обеспечением износостойкости.

Опробование показало также, что легирование стали церием, выходящим за заявляемые пределы, приводит либо к недостаточному модифицированию металла (варианты 8, 10, 18, 20), либо к развитию цериевой неоднородности стали (варианты 9, 19), что снижает стойкость стали к сульфидному КР, ухудшает свариваемость стали при низких температурах.

Кроме того, при опробовании выявлено, что стали с содержанием церия, находящимся в заявляемых пределах, но не удовлетворяющим соотношению
[Ce]≥2,5•10-4/[Al]+0,8[Ti] - варианты I, II;
имеют пониженную стойкость к сульфидному коррозионному растрескиванию.

Применение заявляемой стали позволяет по сравнению с вариантом-прототипом улучшить стойкость стали к сульфидному КР с одновременным улучшением свариваемости при низких температурах и обеспечиванием абразивной износостойкости стали.

Источники информации:
1. Ульянин Е. А. Структура и коррозия металлов. Справочник. - М.: Металлургия, 1989, с. 152 и 153.

2. ГОСТ 4543-71. Сталь легированная.

3. Заявка Японии N 60-114552, 24.10.85.

4. Гудремон Э. Специальные стали. - М.: 1960, том. II, с. 1318 - 1319.

5. Ульянин Е.А. Структура и коррозия металлов и сплавов. Справочник. - М.: Металлургия, 1989, с. 148.

6. Крестовиков А.А. и др. Справочник по расчетам равновесий металлургических реакций. - М.: 1963.

Похожие патенты RU2122045C1

название год авторы номер документа
АЗОТСОДЕРЖАЩАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ ДЛЯ ИЗГОТОВЛЕНИЯ НЕФТЕГАЗОПРОВОДНЫХ ТРУБ 2011
  • Иоффе Андрей Владиславович
  • Тетюева Тамара Викторовна
  • Ревякин Виктор Анатольевич
  • Трифонова Елена Александровна
  • Мовчан Михаил Александрович
RU2460822C1
СТАЛЬ ПОВЫШЕННОЙ КОРРОЗИОННОЙ СТОЙКОСТИ И БЕСШОВНЫЕ ТРУБЫ, ВЫПОЛНЕННЫЕ ИЗ НЕЕ 2002
  • Кузнецов В.Ю.
  • Печерица А.А.
  • Кузнецова Е.Я.
  • Лубе И.И.
  • Фролочкин В.В.
  • Лашкуль Н.Н.
  • Уткин Ю.Н.
  • Родионова И.Г.
  • Бакланова О.Н.
  • Быков А.А.
  • Столяров В.И.
  • Реформатская И.И.
  • Порецкий С.В.
  • Рыбкин А.Н.
RU2243284C2
СТАЛЬ 2007
  • Луценко Андрей Николаевич
  • Немтинов Александр Анатольевич
  • Голованов Александр Васильевич
  • Ефимов Семен Викторович
  • Филатов Николай Владимирович
  • Хорева Анна Александровна
  • Мальцев Андрей Борисович
  • Рослякова Наталья Евгеньевна
  • Князькин Сергей Александрович
  • Ревякин Виктор Анатольевич
  • Иоффе Андрей Владиславович
  • Тетюева Тамара Викторовна
  • Денисова Татьяна Владимировна
RU2361958C2
СТАЛЬ ПОВЫШЕННОЙ КОРРОЗИОННОЙ СТОЙКОСТИ И ЭЛЕКТРОСВАРНЫЕ ТРУБЫ, ВЫПОЛНЕННЫЕ ИЗ НЕЕ 2013
  • Кудашов Дмитрий Викторович
  • Сомов Сергей Александрович
  • Орехов Денис Михайлович
  • Печерица Анатолий Анатольевич
  • Силин Денис Анатольевич
  • Пейганович Иван Викторович
  • Казанков Андрей Юрьевич
  • Семернин Глеб Владиславович
  • Зайцев Александр Иванович
RU2520170C1
ТРУБА ПОВЫШЕННОЙ КОРРОЗИОННОЙ СТОЙКОСТИ 2015
  • Ильичев Андрей Вячеславович
  • Овчинников Дмитрий Владимирович
  • Тихонцева Надежда Тахировна
  • Жукова Светлана Юльевна
  • Лефлер Михаил Ноехович
  • Софрыгина Ольга Андреевна
  • Корчагина Ирина Викторовна
RU2599474C1
СТАЛЬ КОРРОЗИОННО-СТОЙКАЯ В СЕРОВОДОРОДСОДЕРЖАЩИХ СРЕДАХ НЕФТЕГАЗОВЫХ МЕСТОРОЖДЕНИЙ 2022
  • Иванова Татьяна Николаевна
  • Ковалев Дмитрий Юрьевич
RU2810411C1
ВЫСОКОПРОЧНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 2012
  • Дегтярев Александр Федорович
  • Дуб Алексей Владимирович
  • Скоробогатых Владимир Николаевич
  • Шепилов Николай Борисович
RU2493285C1
АУСТЕНИТНАЯ КОРРОЗИОННО-СТОЙКАЯ ВЫСОКОПРОЧНАЯ СТАЛЬ 2001
  • Абубакиров В.Ф.
  • Бондарь А.В.
  • Грибанов А.С.
  • Сакаева Г.С.
  • Русинович Ю.И.
  • Федотов И.Л.
  • Кляцкина В.Ю.
  • Шлямнев А.П.
  • Сорокина Н.А.
RU2218446C2
СПОСОБ ПРОИЗВОДСТВА ПОЛОС ИЗ НИЗКОЛЕГИРОВАННОЙ СВАРИВАЕМОЙ СТАЛИ 2014
  • Мишнев Петр Александрович
  • Палигин Роман Борисович
  • Филатов Николай Владимирович
  • Огольцов Алексей Андреевич
  • Митрофанов Артем Викторович
RU2578618C1
НИЗКОУГЛЕРОДИСТАЯ СТАЛЬ И ПРОКАТ ИЗ НИЗКОУГЛЕРОДИСТОЙ СТАЛИ ПОВЫШЕННОЙ СТОЙКОСТИ К ВОДОРОДНОМУ РАСТРЕСКИВАНИЮ И ПОВЫШЕННОЙ ХЛАДОСТОЙКОСТИ 2011
  • Ламухин Андрей Михайлович
  • Эфрон Леонид Иосифович
  • Кудашов Дмитрий Викторович
  • Московой Константин Анатольевич
  • Дубинин Игорь Владимирович
  • Попков Антон Геннадьевич
  • Хлыбов Олег Станиславович
RU2496906C2

Иллюстрации к изобретению RU 2 122 045 C1

Реферат патента 1998 года СТАЛЬ

Изобретение относится к металлургии, а именно к сплавам черных металлов, и предназначено для использования при изготовлении магистральных труб для перекачки нефтепродуктов в условиях северных широт. В сталь, содержащую углерод, кремний, алюминий, марганец, хром, молибден, титан и железо, дополнительно введен церий при следующем содержании ингредиентов, мас.%: углерод 0,06-0,13, кремний 0,15-0,40, марганец 0,30-0,50, хром 0,40-0,70, молибден 0,08-0,15, алюминий 0,01-0,07, титан 0,005-0,09, церий 0,002-0,05, железо - остальное. При этом содержание церия в каждом конкретном составе стали определяется в зависимости от содержания алюминия и титана по формуле: [Се] ≥2,5 х 10-4 /[Al] + 0,8 [Тi], где [Се], [Аl], [Тi] - содержание церия, алюминия и титана соответственно. Одновременное введение в состав стали алюминия, титана и церия в совокупности с другими элементами в заявляемых пределах обеспечивает высокую стойкость стали к сульфидному растрескиванию в сероводородной среде, хорошую свариваемость стали в условиях низких температур и удовлетворительную износостойкость. 1 табл.

Формула изобретения RU 2 122 045 C1

Сталь, содержащая углерод, кремний, алюминий, марганец, хром, молибден, титан и железо, отличающаяся тем, что она дополнительно содержит церий при следующем содержании ингредиентов, мас.%:
Углерод - 0,06 - 0,13
Кремний - 0,15 - 0,40
Марганец - 0,30 - 0,60
Хром - 0,40 - 0,70
Молибден - 0,08 - 0,15
Алюминий - 0,01 - 0,07
Титан - 0,005 - 0,09
Церий - 0,002 - 0,05
Железо - Остальное
при этом содержание церия, титана и алюминия соответствует условию:
[Ce]≥2,5•10-4/([Al]+0,8[Ti]),
где [Ce] , [Al], [Ti] - содержание церия, алюминия и титана соответственно.

Документы, цитированные в отчете о поиске Патент 1998 года RU2122045C1

JP 60114552 A, 21.06.85
JP 09217146 A, 19.08.97
ФЕРРИТО-ПЕРЛИТНАЯ СТАЛЬ 0
SU282659A1
Теплоустойчивая хромистая сталь 1975
  • Коляда Александр Александрович
  • Лев Владлен Зиновьевич
  • Котылев Владимир Алексеевич
  • Давидчук Павел Иванович
SU569648A1
Малоуглеродистая сталь 1977
  • Насибов Али Гасан
  • Литвиненко Денис Ануфриевич
  • Матросов Юрий Иванович
  • Абабков Владимир Тихонович
SU616338A1
Сталь 1983
  • Ланская Ксения Алексеевна
  • Матросов Юрий Иванович
  • Корешкова Антонина Михайловна
  • Извалов Сергей Борисович
  • Ковтуненко Виктор Алексеевич
  • Шнайдер Марк Бенционович
  • Шамонина Инна Григорьевна
  • Мироненко Эдуард Кириллович
  • Климашин Петр Сергеевич
  • Вяткин Юрий Федорович
  • Уманец Валерий Иванович
  • Тишков Виктор Яковлевич
  • Дьяконова Валентина Сергеевна
  • Зисельман Борис Григорьевич
  • Ромашевский Владимир Борисович
  • Молчанова Валентина Дмитриевна
SU1135795A1
Сталь 1988
  • Голованенко Сергей Александрович
  • Литвиненко Денис Ануфриевич
  • Матросов Юрий Иванович
  • Морозов Юрий Дмитриевич
  • Насибов Али Гасан Оглы
  • Чевская Ольга Николаевна
  • Лунев Юрий Юрьевич
  • Плискановский Александр Станиславович
  • Носоченко Олег Васильевич
  • Сахно Валерий Александрович
SU1636472A1
НАПЛАВНОЕ ЗДАНИЕ ВОЛНОВОЙ ЭЛЕКТРОСТАНЦИИ 2011
  • Баранов Алексей Владимирович
  • Баранова Анна Николаевна
RU2495189C2
СПОСОБ ИЗГОТОВЛЕНИЯ БИОЛОГИЧЕСКОГО ПРОТЕЗА ВЕНОЗНОГО КЛАПАНА 2010
  • Барбараш Леонид Семенович
  • Журавлева Ирина Юрьевна
  • Кудрявцева Юлия Александровна
  • Насонова Марина Владимировна
  • Тогулева Анна Геннадьевна
RU2429023C1
US 3909250 A, 30.09.75
Приспособление для плетения проволочного каркаса для железобетонных пустотелых камней 1920
  • Кутузов И.Н.
SU44A1

RU 2 122 045 C1

Авторы

Дегай А.С.

Григорьев А.Г.

Давыдов В.Я.

Губин Ю.Г.

Катюшкин В.Г.

Меньшикова Р.Н.

Стародворский В.С.

Сулацков В.И.

Власов Л.А.

Клейнер Л.М.

Медведев А.П.

Тетюева Т.В.

Прохоров Н.Н.

Галиченко Е.Н.

Глазырин Б.С.

Даты

1998-11-20Публикация

1997-10-23Подача