СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ ИЗОТРОПНОЙ СТАЛИ Российский патент 1999 года по МПК C21D8/12 C21D1/74 

Описание патента на изобретение RU2126843C1

Изобретение относится к черной металлургии, конкретно к способам получения холоднокатаной электротехнической изотропной стали.

Известен способ обработки электротехнической изотропной стали, приведенный в авторском свидетельстве СССР N 840143, C 21 D, 1/26, от 31.05.79 г. Способ предусматривает травление горячекатаной полосы с содержанием кремния 0,8 - 3,5%, углерода 0,015 - 0,06% и алюминия 0,01 - 0,06%, однократную холодную прокатку на конечную толщину и обезуглероживающий отжиг стали. При этом способ предусматривает обезуглероживание во влажной атмосфере, которое начинают при высокотемпературной ступени 1000 - 1100oC в течениe 30 - 120 с, с последующим охлаждением со скоростью 300 - 580oC/мин до промежуточной температуры 800 ± 40oC и непрерывном переходе со скоростью 30 - 60oC/мин от промежуточной температуры на заключительный интервал температур обезуглероживания 920 - 990oC.

Но обработка стали по данному способу с использованием на начальной стадии термообработки холоднокатаного проката обезуглероживающего отжига при температуре 1000 - 1100oC приводит к окислению металла по границам зерен во влажной атмосфере, глубина зоны внутреннего окисления при этом возрастает, а электромагнитные свойства ухудшаются.

Наиболее близким по технической сущности к предлагаемому изобретению является способ получения изотропной электротехнической стали, приведенный в патенте России N 2085598, C 21 D 8/12, от 31.04.94 г., который и принят в качестве прототипа. Способ предусматривает выплавку, горячую и однократную холодную прокатку полосы на конечную толщину стали с содержанием кремния 0,3 - 3,2%, алюминия 0,2 - 0,7% и углерода 0,02 - 0,05%, электронно-лучевой отжиг холоднокатаной полосы при температуре 600 - 1200oC и обезуглероживающе-рекристаллизационный отжиг металла в защитной атмосфере в диапазоне температур 800 - 1050oC. Однако обработка стали по этому способу с дополнительным радиационно-термическим отжигом металла усложняет технологию производства и существенно повышает себестоимость готовой продукции.

Технической задачей, на решение которой направлено изобретение, является улучшение электромагнитных свойств электротехнической изотропной стали. Поставленная задача достигается тем, что термообработку холоднокатаной стали с содержанием кремния 0,2 - 1,5%; алюминия 0,1 - 0,5%; углерода 0,02 - 0,05%; марганца 0,15 - 1,0%; фосфора 0,01 - 0,16%, и прошедшей горячую и однократную холодную прокатку на конечную толщину, начинают на начальной стадии с нагрева и выдержки металла в атмосфере защитного газа. Температуру выдержки определяют в зависимости от содержания кремния и алюминия в соответствии с соотношением:
tв = K1+K2(Si+Al) ± 5oC,
где tв - температура выдержки стали, oC;
K1, K2 - экспериментально определенные коэффициенты K1 = 915, K2 = 30;
Si - содержание кремния в стали,%;
Al - содержание алюминия в стали,%.

Длительность выдержки выбирают в зависимости от суммы легирующих элементов кремния и алюминия:
(Si+Al) = (0,30 - 1,0)% = 50 - 85 с
(Si+Al) = (1,1 - 1,5)% = 90 - 125 с
(Si+Al) = (1,6 - 2,0)% = 130 - 200 с
Необходимым условием получения в электротехнической изотропной стали высокого уровня электромагнитных свойств является формирование в металле оптимального размера микрозерна и увеличение полюсной плотности кубической { 200} и ребровой {220}ориентировок. Это достигается в процессе обезуглероживания стали до содержания углерода менее 0,005% во влажной азотоводородной атмосфере при непрерывном переходе от температуры выдержки 919 - 980oC с понижением температуры отжига до 800 - 870oC на конечной стадии термообработки. При температуре начала обезуглероживания 919 - 980oC в результате γ → α фазового превращения в металле при понижении температуры отжига от поверхности к середине толщины полосы происходит "столбчатый" рост ферритных зерен. Напряжения, возникающие в стали в локальных объемах при фазовом переходе γ → α стимулируют в поверхностных и средних слоях полосы рост зерен ориентировок {200}, {220}.

Проведенные исследования позволяют утверждать, что увеличение количества ориентировок { 200}, {220} в готовой стали связано с увеличением количества γ- фазы в металле перед началом обезуглероживания.

Количество γ- фазы в стали зависит в первую очередь от массовой доли кремния и алюминия, а также температуры выдержки стали перед началом обезуглероживания. Причем с ростом массовой доли легирующих элементов кремния и алюминия объем γ- фазы - уменьшается, а с ростом температуры - увеличивается.

Поэтому для получения в стали оптимального количества γ- фазы и соответственно максимального уровня электромагнитных свойств стали необходимо с повышением массовой доли легирующих элементов (кремния и алюминия) увеличивать температуру и длительность выдержки холоднокатаной полосы перед началом обезуглероживания.

Пример реализации.

Предлагаемый способ производства холоднокатаной электротехнической изотропной стали осуществляется следующим образом:
Выплавляют сталь с содержанием кремния 0,2 - 1,5%; алюминия 0,1 - 0,5%; углерода 0,02 - 0,05%; марганца 0,15 - 1,0%; фосфора 0,01 - 0,16% и подвергают горячей и однократной холодной прокатке на конечную толщину 0,50 - 0,65 мм.

Окончательная термообработка проводится в агрегате непрерывного отжига при нагреве и выдержке холоднокатаной стали в атмосфере защитного газа при температуре 919 - 980oC на начальной стадии с последующим непрерывным переходом на обезуглероживание металла до содержания углерода менее 0,005% во влажной азотоводородной атмосфере (H2 20%, остальное N2) с понижением температуры отжига до 800 - 870oC на конечной стадии термообработки.

Химический состав стали, температура и длительность отжига (выдержки перед началом обезуглероживания) холоднокатаных полос и магнитные свойства готовой стали представлены в таблице.

Похожие патенты RU2126843C1

название год авторы номер документа
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ХОЛОДНОКАТАНЫХ ПОЛОС ИЗОТРОПНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ 2004
  • Чеглов Александр Егорович
  • Миндлин Борис Игоревич
  • Барыбин Владимир Алексеевич
RU2278171C2
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ ПОЛУОБРАБОТАННОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ 2000
  • Скороходов В.Н.
  • Настич В.П.
  • Чернов П.П.
  • Чеглов А.Е.
  • Миндлин Б.И.
  • Парахин В.И.
  • Барыбин В.А.
RU2178006C1
Способ производства полупроцессной электротехнической изотропной стали с низкими удельными магнитными потерями 2018
  • Черников Олег Владимирович
  • Барыбин Владимир Алексеевич
  • Барыбин Дмитрий Владимирович
  • Дегтев Сергей Сергеевич
RU2693277C1
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ ИЗОТРОПНОЙ СТАЛИ 2002
  • Настич В.П.
  • Чеглов А.Е.
  • Миндлин Б.И.
  • Барыбин В.А.
  • Парахин В.И.
RU2219253C2
СПОСОБ ПОЛУЧЕНИЯ ИЗОТРОПНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ 1994
  • Франценюк И.В.
  • Франценюк Л.И.
  • Гофман Ю.И.
  • Рябов В.В.
  • Настич В.П.
  • Миндлин Б.И.
  • Шаршаков И.М.
  • Гвоздев А.Г.
  • Логунов В.В.
  • Заверюха А.А.
  • Хватова Н.Ф.
  • Карманов В.П.
RU2085598C1
СПОСОБ ТЕРМООБРАБОТКИ ХОЛОДНОКАТАНЫХ ПОЛОС ИЗОТРОПНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ 1994
  • Франценюк И.В.
  • Казаджан Л.Б.
  • Настич В.П.
  • Лосев К.Ф.
  • Миндлин Б.И.
  • Парахин В.И.
RU2081190C1
Способ получения изотропной электротехнической стали 2021
  • Губанов Олег Михайлович
RU2762195C1
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ ПОЛУОБРАБОТАННОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ 1999
  • Лисин В.С.
  • Скороходов В.Н.
  • Настич В.П.
  • Кукарцев В.М.
  • Чеглов А.Е.
  • Миндлин Б.И.
  • Парахин В.И.
  • Барыбин В.А.
RU2180925C2
СПОСОБ ПОЛУЧЕНИЯ ИЗОТРОПНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ 2000
  • Чеглов А.Е.
  • Миндлин Б.И.
  • Гвоздев А.Г.
  • Логунов В.В.
  • Парахин В.И.
RU2186861C2
СПОСОБ ТЕРМООБРАБОТКИ ХОЛОДНОКАТАНОЙ ПОЛОСЫ ИЗОТРОПНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ 1994
  • Франценюк И.В.
  • Казаджан Л.Б.
  • Настич В.П.
  • Лосев К.Ф.
  • Миндлин Б.И.
  • Парахин В.И.
RU2082770C1

Иллюстрации к изобретению RU 2 126 843 C1

Реферат патента 1999 года СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ ИЗОТРОПНОЙ СТАЛИ

Использование: получение холоднокатаной электротехнической изотропной стали с улучшенными электромагнитными свойствами. Техническим результатом является улучшение электромагнитных свойств стали. Сущность изобретения: выплавленную сталь с содержанием кремния 0,2 - 1,5%, алюминия 0,1 - 0,5%, углерода 0,02 - 0,05%, марганца 0,1 - 1,0%, фосфора 0,01 - 0,16% подвергают горячей и однократной холодной прокатке на конечную толщину, обезуглероживающему отжигу холоднокатаного металла в интервале температур 980 - 800°С, при этом отжиг холоднокатаной стали на начальной стадии начинают с нагрева и выдержки металла с атмосфере защитного газа при температуре, которую определяют в зависимости от содержания кремния и алюминия в соответствии с соотношением tв= k1+ k2(Si+Al)±5oC где tв - температура выдержки стали, °С; k1, k2 - экспериментально определенные коэффициенты, k1=915, k2=30. Si - содержание кремния в стали, %; Al - содержание алюминия в стали, %, а длительность выдержки выбирают в зависимости от суммы легирующих элементов кремния и алюминия: (Si+А1) = (0,30 - 1,0)% = 50 - 85 с; (Si+Аl) = (1,1 - 1,5)% = 90 - 125 с; (Si+ Аl) = (1,6 -2,0)% = 130 - 200 с. В процессе отжига происходит непрерывный переход от температуры выдержки стали 919 - 980°С на обезуглероживание металла до содержания углерода менее 0,005% во влажной азотоводородной атмосфере с понижением температуры отжига стали до 800-870°С на конечной стадии термообработки. 1 табл.

Формула изобретения RU 2 126 843 C1

Способ производства холоднокатаной электротехнической изотропной стали, включающий ее выплавку, горячую и однократную холодную прокатку полосы на конечную толщину, обезуглероживающе-рекристаллизационный отжиг холоднокатаного металла в защитной атмосфере, отличающийся тем, что отжиг холоднокатаной стали, содержащей, мас.%: 0,2 - 1,5 кремния; 0,1 - 0,5 алюминия; 0,02 - 0,05 углерода; 0,15 - 1,0 марганца; 0,01 - 0,16 фосфора на начальной стадии начинают с нагрева и выдержки металла в атмосфере защитного газа при температуре, которую определяют в зависимости от содержания кремния и алюминия в соответствии с соотношением
tв = K1 + K2 (Si + Al) ± 5oC,
где tв - температура выдержки стали, oC;
K1, K2 - экспериментально определенные коэффициенты, K1 = 915, K2 = 30;
Si - содержание кремния в стали, %;
Al - содержание алюминия в стали, %,
а длительность выдержки выбирают в зависимости от суммы легирующих элементов кремния и алюминия:
(Si + Al) = (0,30 - 1,0)% = 50 - 85 c,
(Si + Al) = (1,1 - 1,5)% = 90 - 125 c,
(Si + Al) = (1,6 - 2,0)% = 130 - 200 c;
с последующим непрерывным переходом на обезуглероживание металла до содержания углерода менее 0,005% во влажной азотоводородной атмосфере с понижением температуры отжига стали до 800 - 870oC на конечной стадии термообработки.

Документы, цитированные в отчете о поиске Патент 1999 года RU2126843C1

СПОСОБ ПОЛУЧЕНИЯ ИЗОТРОПНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ 1994
  • Франценюк И.В.
  • Франценюк Л.И.
  • Гофман Ю.И.
  • Рябов В.В.
  • Настич В.П.
  • Миндлин Б.И.
  • Шаршаков И.М.
  • Гвоздев А.Г.
  • Логунов В.В.
  • Заверюха А.А.
  • Хватова Н.Ф.
  • Карманов В.П.
RU2085598C1
Способ отжига изотропной электро-ТЕХНичЕСКОй СТАли 1979
  • Лосев Константин Федорович
  • Барятинский Валерий Петрович
  • Казаджан Леонид Берунович
  • Миронов Леонард Владимирович
  • Кальченко Юрий Евгеньевич
  • Кузнецов Дмитрий Константинович
  • Шаповалов Анатолий Петрович
  • Чернобровкина Лидия Спиридоновна
  • Голяев Валентин Иванович
  • Парахин Владимир Иванович
  • Кукушкин Николай Дмитриевич
  • Мацюк Михаил Иванович
SU840143A1
Способ термической обработки магнитопроводов из малоуглеродистой стали 1982
  • Тильк Виктор Томасович
  • Сокиркин Владимир Иванович
  • Прокофьев Григорий Григорьевич
  • Новиков Василий Васильевич
SU1147763A1
Способ производства электротехнической холоднокатаной изотропной стали с суммарным содержанием кремния и алюминия менее 4% 1986
  • Гольдштейн Владимир Яковлевич
  • Савинская Александра Александровна
  • Калинин Вячеслав Николаевич
  • Барятинский Валерий Петрович
  • Шаповалов Анатолий Петрович
  • Поляков Михаил Юрьевич
  • Парахин Владимир Иванович
  • Кукушкин Николай Дмитриевич
SU1425226A1
Способ производства электротехнической стали 1990
  • Деменко Николай Дмитриевич
  • Левин Михаил Борисович
  • Синицын Владимир Григорьевич
  • Цырлин Михаил Борисович
  • Дубовицкий Валерий Иванович
  • Талалайкин Геннадий Евдокимович
  • Смирнова Людмила Григорьевна
  • Хаустов Сергей Октябревич
SU1715868A1

RU 2 126 843 C1

Авторы

Настич В.П.

Чеглов А.Е.

Миндлин Б.И.

Парахин В.И.

Барыбин В.А.

Даты

1999-02-27Публикация

1998-04-07Подача