СПОСОБ АНИОНООБМЕННОГО РАЗДЕЛЕНИЯ ХРОМА И ВАНАДИЯ Российский патент 1999 года по МПК C22B3/24 B01D15/04 C01G31/00 C01G37/00 

Описание патента на изобретение RU2126846C1

Изобретение относится к области химической технологии и может быть использовано в радиохимии и аналитической химии.

Известны способы анионообменного разделения хрома и ванадия в степенях окисления Cr(lll) и V(IV,V) в присутствии комплексообразующих реагентов: роданида калия [Schmitt B.R., Segebade С. Z. Anal. Chem., 270,193(1974)] и этилендиаминтетрауксусной кислоты (ЭДТА) [Nelson F., Day R.A., Kraus K.A. J. Inorg. Nucl. Chem., 15,140(1960)].

Указанные способы включают следующие операции: перевод разделяемых элементов в раствор, введение в раствор комплексообразователя и, при необходимости, корректировка кислотности раствора, статическое или динамическое контактирование раствора с анионитом, фракционирование раствора в ходе хроматографического разделения или отделение раствора от анионита и десорбция поглощенного компонента при статическом разделении.

Недостатком указанных способов является низкая степень взаимной очистки хрома и ванадия. Данный недостаток обусловлен низким соотношением коэффициентов распределения разделяемых элементов.

Наиболее близким аналогом, совпадающим с заявляемым изобретением по наибольшему количеству существенных признаков, является способ [Р.Курода, Т. Кирияма, Japan Analyst, 19(1970), 1287; цит. по РЖХим, 1971, 7Г168], включающий следующие операции: получение раствора хлоридов разделяемых элементов в 0,1 моль/л HCl, введение в полученный раствор пероксида водорода до его конечной концентрации 5% (объемн.), контактирование полученного раствора с анионитом Dowex 1х8, получение хрома и ванадия в виде их индивидуальных растворов (после контактирования хром находится в растворе, ванадий переводят в раствор последующей обработкой сорбента 4 - 6 моль/л HCl)
Недостатком прототипа является снижение степени очистки хрома при увеличении концентрации последнего в рабочем растворе. Указанный недостаток обусловлен снижением коэффициента распределения ванадия (DV) в данной сорбционной системе. Так, если в интервале концентраций хрома 0,1 - 1,0 г/л коэффициент распределения ванадия составляет 45±5, то при содержании хрома 5 г/л DV уменьшается до 20±3. Ввиду того, что коэффициент распределения хрома (DCr) в интервале его концентраций 0,1 - 10 г/л имеет значение, не превышающее 0,5, степень очистки ванадия остается при этом постоянной.

Для увеличения степени очистки хрома при анионообменном разделении данных элементов хром и ванадий переводят в раствор их уксуснокислых солей (ацетатов) в уксусной кислоте с концентрацией последней 0,5 - 13 моль/л, вводят пероксид водорода и контактируют полученный раствор с сильноосновным анионитом (в статическом или колоночном варианте). После контактирования хром находится в исходном растворе, для перевода в раствор ванадия сорбент обрабатывают 4 - 6 моль/л HCl.

Новым существенным признаком заявляемого способа по сравнению с прототипом является проведение процесса разделения хрома и ванадия из раствора их ацетатов в уксусной кислоте.

Наличие операции перевода разделяемых элементов в раствор их ацетатов в уксусной кислоте позволяет увеличить коэффициент распределения ванадия в интервале концентраций хрома 0,1 - 1 г/л до величины (1,0±0,2)•104, что в 180 - 200 раз превышает соответствующий показатель прототипа. При концентрации хрома 5 г/л коэффициент распределения ванадия по заявляемому способу превышает DV по прототипу в 100 - 140 раз и составляет (3,2±0,5)•103. Таким образом, при прочих равных условиях предлагаемое решение обеспечивает более глубокую, по сравнению с прототипом, очистку хрома от ванадия. Величина коэффициента распределения хрома (DCr), определяющая степень очистки от него ванадия, не превышает 0,5 как для прототипа, так и для предлагаемого решения во всем заявляемом интервале концентраций уксусной кислоты. Следовательно, использование заявляемого способа не приводит к ухудшению данного показателя прототипа.

Минимальная концентрация уксусной кислоты определяется необходимостью устранения эффектов гидролиза хрома и изменения химических форм пероксидного соединения ванадия. Верхняя граница концентрации CH3COOH в рабочем растворе определяется естественным снижением максимально достижимой ее концентрации (16,5 моль/л) за счет введения раствора H2O2. Верхняя граница концентрации хрома определяется растворимостью его ацетата.

Наличие операции перевода разделяемых элементов в их уксуснокислые соли является необходимым условием получения положительного эффекта при последующем анионо-обменном разделении. Так, положительный эффект не достигается (величина Dv не превышает показатель прототипа) при проведении разделения из растворов хлоридов хрома и ванадия в уксусной кислоте во всем заявляемом интервале ее концентраций.

Таким образом, использование растворов ацетатов хрома и ванадия в уксусной кислоте для их анионообменного разделения приводит к новым, не описанным в литературе их свойствам. Это позволяет сделать вывод, что заявляемое решение обладает существенными отличиями.

Положительный эффект при использовании заявляемого решения заключается в увеличении степени очистки хрома от ванадия и, как следствие, в увеличении выхода ванадия.

Разделение хрома и ванадия в уксуснокислых растворах.

Ацетатные растворы хрома и ванадия готовили осаждением их смешанных гидроксидов аммиаком, отделением и промывкой полученного осадка водой с последующим растворением гидроксидов в 16,5 моль/л уксусной кислоте. Ванадий в исходном растворе находился в одной из его устойчивых степеней окисления: V(IV) или V(V). Аликвоты полученного раствора использовали для приготовления менее концентрированных по CH3COOH смешанных растворов хрома и ванадия. В растворы ацетатов хрома и ванадия добавляли пероксид водорода (25%-ный раствор) в количестве, соответствующем его содержанию в рабочем растворе 5%(объемн.). Полученный раствор контактировали в статических условиях с анионитом Dowex 1х8 при соотношении объемов сорбента и раствора 1/15. Исходная концентрация ванадия во всех случаях составляла 0,2 г/л.

Результаты представлены в табл. 1. Как видно из табл. 1, в интервале концентраций хрома 1 - 10 г/л коэффициент распределения ванадия изменяется от 1,0•104 до 1,3•103, что при указанных условиях разделения позволяет снизить содержание в хроме ванадия до уровня, соответственно, (0,2 - 1,1)% к исходному. Выход ванадия составляет от 98,9% до 99,8%.

Сравнение с прототипом.

Разделение хрома и ванадия (статический вариант). Раствор ацетата хрома и ванадия в 4 моль/л CH3COOH получали, как указано в примере 1. Разделение по прототипу проводили из растворов 0,1 моль/л соляной кислоты. Во всех случаях растворы содержали 5% (объемн. ) пероксида водорода. Соотношение объемов анионита Lowex 1х8 и раствора составляло 1/15. Исходная концентрация ванадия 0,2 г/л. Результаты представлены в табл. 2
Как видно из табл. 2, степень очистки хрома от ванадия в уксуснокислых растворах превышает соответствующий показатель прототипа в ≈50 ([Cr]=10 г/л) и более (≈150 для [Cr] =1 г/л) раз. Выход ванадия по заявляемому способу составил не менее 98,5%. Для сравнения, по прототипу выход ванадия снижается по мере роста концентрации хрома от 74% ([Cr]-1 г/л) до 43% ([Cr]= 10 г/л).

Динамическое (колоночное) разделение. Разделение проводили на колонках, содержащих 1 см3 анионита Dowex 1х8. Геометрические характеристики колонок, а также скорость фильтрации были одинаковыми. Исходный раствор содержал: хрома 4 г/л, ванадия 0,4 г/л, пероксида водорода 5%(объемн.). Рабочей средой являлись: 0,1 моль/л HCl (прототип) и 4 моль/л CH3COOH (заявляемое решение). Результаты хроматографического разделения хрома и ванадия по прототипу и по заявляемому решению представлены в табл. 3.

Как видно из табл. 3, степень хроматографической очистки равных масс хрома по заявляемому способу значительно выше, чем по прототипу. Так, при разделении 0,14 г хрома и 0,014 г ванадия остаточное содержание ванадия составляет: 11,7% (прототип) и 0,12% (заявляемый способ). При этом выход ванадия составляет 88,3% (прототип) и 99,88% (заявляемый способ).

Похожие патенты RU2126846C1

название год авторы номер документа
СПОСОБ ОЧИСТКИ ПРЕПАРАТОВ РАДИОНУКЛИДОВ ОЛОВА 2000
  • Андреев О.И.
RU2183588C2
СПОСОБ ВЫДЕЛЕНИЯ РАДИОНУКЛИДА Sr-89 БЕЗ НОСИТЕЛЯ ИЗ ОБЛУЧЕННОГО ИТТРИЯ 2000
  • Карелин Е.А.
  • Андреев О.И.
  • Кузнецов Р.А.
  • Тетюкова Н.В.
RU2177909C1
СПОСОБ ОЧИСТКИ ПРЕПАРАТА РАДИОНУКЛИДА НИКЕЛЯ-63 2002
  • Андреев О.И.
  • Корнилов А.С.
  • Филимонов В.Т.
RU2219133C1
СПОСОБ ВЫДЕЛЕНИЯ ГАДОЛИНИЯ ИЗ ОБЛУЧЕННОГО ЕВРОПИЯ 1997
  • Лебедев В.М.
  • Ядовин А.А.
  • Филимонов В.Т.
RU2120409C1
СПОСОБ ВЫДЕЛЕНИЯ РАДИОНУКЛИДА Sr-89 БЕЗ НОСИТЕЛЯ ИЗ ОБЛУЧЕННОГО ИТТРИЯ 2000
  • Андреев О.И.
  • Карелин Е.А.
  • Кузнецов Р.А.
  • Филимонов В.Т.
  • Пахомов А.Н.
RU2178388C1
СПОСОБ ПОЛУЧЕНИЯ ОКСАЛАТОВ РЕДКОЗЕМЕЛЬНЫХ ИЛИ ТРАНСПЛУТОНИЕВЫХ ЭЛЕМЕНТОВ 1995
  • Филимонов В.Т.
  • Кузнецов Р.А.
  • Кузнецова Н.В.
  • Ядовин А.А.
RU2089538C1
СПОСОБ РАЗДЕЛЕНИЯ РАДИОНУКЛИДОВ СЕРЕБРА И КАДМИЯ 2002
  • Андреев О.И.
RU2230032C2
СПОСОБ ХРОМАТОГРАФИЧЕСКОГО ИЗВЛЕЧЕНИЯ СТРОНЦИЯ ИЗ РАСТВОРОВ 2001
  • Кузнецов Р.А.
  • Пахомов А.Н.
  • Андреев О.И.
  • Филимонов В.Т.
RU2198843C1
Способ выделения Ni-63 из облученной мишени и очистки его от примесей 2019
  • Буткалюк Павел Сергеевич
  • Буткалюк Ирина Львовна
  • Корнилов Александр Степанович
  • Черноокая Евгения Валерьевна
  • Дитяткин Валерий Алексеевич
RU2720703C1
СПОСОБ ВЫДЕЛЕНИЯ ЦЕРИЯ ИЛИ БЕРКЛИЯ ИЗ ОБЛУЧЕННЫХ МАТЕРИАЛОВ 2000
  • Леваков Б.И.
  • Ядовин А.А.
  • Карелин Е.А.
  • Гордеев Я.Н.
  • Анохин Ю.П.
RU2186732C2

Иллюстрации к изобретению RU 2 126 846 C1

Реферат патента 1999 года СПОСОБ АНИОНООБМЕННОГО РАЗДЕЛЕНИЯ ХРОМА И ВАНАДИЯ

Изобретение относится к разделению хрома и ванадия. Оно позволяет увеличить степень очистки хрома при анионообменном разделении хрома и ванадия. Для этого разделение проводят из раствора ацетатов хрома и ванадия в уксусной кислоте с концентрацией последней 0,5-13,0 моль/л. 3 табл.

Формула изобретения RU 2 126 846 C1

Способ анионообменного разделения хрома и ванадия, включающий получение раствора их солей в смеси кислоты и пероксида водорода, контактирование полученного раствора с сильноосновным анионитом с последующим отделением раствора от сорбента, отличающийся тем, что разделение проводят из раствора ацетатов хрома и ванадия в уксусной кислоте с концентрацией последней 0,5 - 13 моль/л.

Документы, цитированные в отчете о поиске Патент 1999 года RU2126846C1

Реферативный журнал
Химия
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов 1921
  • Ланговой С.П.
  • Рейзнек А.Р.
SU7A1
Химия и технология ванадиевых соединений
Материалы Первого Всесоюзного совещания по химии, технологии и применению соединений ванадия (Пермь 1972)
Пермское книжное издательство, 1974, с.412 - 414
СПОСОБ ПОЛУЧЕНИЯ ПЯТИОКИСИ ВАНАДИЯ 0
  • Изобретепи Б. И. Короткевич, А. И. Вулих, У. А. Саидахмедов, Д. А.
  • Л. П. Жердиенко, С. Л. Мильский, А. П. Плескачев, Б. Н. Н. Ризаев А. А. Алов Йников
SU281441A1
Носитель катализаторов из пористого вещества 1952
  • Ковалев Л.К.
  • Рафиков С.Р.
  • Сокольский Д.В.
SU104883A1
СПОСОБ ФЕРМЕНТАТИВНОГО ОПРЕДЕЛЕНИЯ ФЕНОЛОВ 1993
  • Егоров А.М.
  • Газарян И.Г.
  • Решетникова И.А.
  • Шеховцова Т.Н.
RU2073723C1
СПОСОБ ВОЗВЕДЕНИЯ СТЕН ЗДАНИЙ В СКОЛЬЗЯЩЕЙ 0
  • Витель В. И. Паньковский, Я. Д. Зенгин В. Е. Андреев
SU368380A1
ВЫДЕЛЕННЫЙ ПОЛИПЕПТИД, ОБЛАДАЮЩИЙ АНТИВИРУСНОЙ АКТИВНОСТЬЮ (ВАРИАНТЫ), КОДИРУЮЩИЙ ЕГО ПОЛИНУКЛЕОТИД (ВАРИАНТЫ), ЭКСПРЕССИРУЮЩИЙ ВЕКТОР, РЕКОМБИНАНТНАЯ КЛЕТКА-ХОЗЯИН, СПОСОБ ПОЛУЧЕНИЯ ПОЛИПЕПТИДА, АНТИТЕЛО, СПЕЦИФИЧНОЕ К ПОЛИПЕПТИДУ, И ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ, СОДЕРЖАЩАЯ ПОЛИПЕПТИД 2002
  • Шеппард Пол О.
  • Фокс Брайан А.
  • Клачер Кевин М.
  • Тэфт Дейвид У.
  • Киндсвогел Уэйн Р.
RU2321594C2
US 5114579, 19.05.95.

RU 2 126 846 C1

Авторы

Андреев О.И.

Даты

1999-02-27Публикация

1998-01-26Подача